
Linux Security and Isolation APIs Fundamentals

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2025

August 2025

mtk@man7.org

Outline Rev: # caf166f4161b

14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Goals

We’ll focus on:
General principles of operation; goals of cgroups
The cgroup2 filesystem
Interacting with cgroup2 filesystem using shell commands

By 2021, all major distros switched to cgroups v2, so we’ll
ignore cgroups v1

We’ll look briefly at some of the controllers

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-4 §14.1

Resources

Kernel documentation files
V2: Documentation/admin-guide/cgroup-v2.rst
V1: Documentation/admin-guide/cgroup-v1/*.rst

Before Linux 5.3: Documentation/cgroup-v1/*.txt
cgroups(7) manual page
Chris Down, 7 years of cgroup v2 (FOSDEM 2023),
https://www.youtube.com/watch?v=LX6fMlIYZcg
Neil Brown’s (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/

Thought-provoking ideas on the meaning of grouping & hierarchy
https://lwn.net/Articles/484254/ – Tejun Heo’s initial thoughts
about redesigning cgroups (Feb 2012)

See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

Other articles at https://lwn.net/Kernel/Index/#Control_groups

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-5 §14.1

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

What are control groups?

Two principal components:
A mechanism for hierarchically grouping processes
A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

Interface is via a pseudo-filesystem
Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands
Programmatically
Via management daemon, e.g., systemd
Via your container framework’s tools (e.g., LXC, Docker)

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-7 §14.2

What do cgroups allow us to do?

Limit resource usage of group
E.g., limit % of CPU available to group; limit amount of
memory that group can use

Resource accounting
Measure resources used by processes in group

Limit device access
Pin processes to CPU cores
Shape network traffic
Freeze a group

Freeze, restore, and checkpoint a group
And more...

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-8 §14.2

Terminology

Control group: a group of processes that are bound
together for purpose of resource management
(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpu controller
limits CPU usage
Also known as subsystem

(But that term is rather ambiguous because so generic)

Cgroups are arranged in a hierarchy
Each cgroup can have zero or more child cgroups
Child cgroups inherit control settings from parent

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-9 §14.2

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell commands)
to create cgroups

Each subdirectory contains automagically created files
Some files are used to manage the cgroup itself
Other files are controller-specific

Files in cgroup are used to:
Define/display membership of cgroup
Control behavior of processes in cgroup
Expose information about processes in cgroup (e.g.,
resource usage stats)

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-10 §14.2

The cgroup2 filesystem

On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup
(or /sys/fs/cgroup/unified, if systemd is operating in
cgroups “hybrid” mode)

mount -t cgroup2 none /sys/fs/cgroup

The (pseudo)filesystem type is “cgroup2”
In cgroups v1, filesystem type is “cgroup”

The cgroups v2 mount is sometimes known as the “unified
hierarchy”

Because all controllers are associated with a single hierarchy
By contrast, in v1 there were multiple hierarchies

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-11 §14.2

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Example: the pids controller

pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)
Create new cgroup, and place shell’s PID in that cgroup:
mkdir /sys/fs/cgroup/mygrp
echo $$
17273
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

cgroup.procs defines/displays PIDs in cgroup
(Note ’#’ prompt ⇒ all commands done as superuser)

Moving a PID into a group automatically removes it from
group of which it was formerly a member

I.e., a process is always a member of exactly one group in the
hierarchy

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-13 §14.3

Example: the pids controller

Can read cgroup.procs to see PIDs in group:
cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

Where did PID 20591 come from?
PID 20591 is cat command, created as a child of shell

Child process inherits cgroup membership from parent

pids.current shows how many processes are in group:
cat /sys/fs/cgroup/mygrp/pids.current
2

Two processes: shell + cat

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-14 §14.3

Example: the pids controller

We can limit number of PIDs in group using pids.max file:
echo 5 > /sys/fs/cgroup/mygrp/pids.max
for a in $(seq 1 5); do sleep 60 & done
[1] 21283
[2] 21284
[3] 21285
[4] 21286
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

(The shell retries a few times and then gives up)
pids.max defines/exposes limit on number of PIDs in cgroup

From a different shell, examine pids.current:
$ cat /sys/fs/cgroup/mygrp/pids.current
5

Not possible from first shell (can’t create more processes)

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-15 §14.3

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Creating cgroups

Initially, all processes on system are members of root cgroup
New cgroups are created by creating subdirectories under
cgroup mount point:
mkdir /sys/fs/cgroup/mygrp

Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-17 §14.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory
Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

Presence of zombie process does not prevent removal of
cgroup directory

(Notionally, zombies are moved to root cgroup)

Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-18 §14.4

Placing a process in a cgroup

To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

In multithreaded process, moves all threads to cgroup
" Can write only one PID at a time

Otherwise, write() fails with EINVAL

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-19 §14.4

Viewing cgroup membership

To see PIDs in cgroup, read cgroup.procs file
PIDs are newline-separated
Zombie processes do not appear in list

" List is not guaranteed to be sorted or free of
duplicates

PID might be moved out and back into cgroup or recycled
while reading list

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-20 §14.4

Cgroup membership details

A process can be member of just one cgroup
That association defines attributes / parameters that apply
to the process

Adding a process to a different cgroup automatically removes
it from previous cgroup
On fork(), child inherits cgroup membership(s) of parent

Afterward, cgroup membership(s) of parent and child can be
independently changed
Since Linux 5.7 (2020), a child process can be created in a
specific v2 cgroup using clone3() CLONE_INTO_CGROUP

See procexec/t_CLONE_INTO_CGROUP.c

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-21 §14.4

/proc/PID/cgroup file

/proc/PID/cgroup shows cgroup memberships of PID
8:cpu,cpuacct:/cpugrp3
7:freezer:/
...
0::/grp1

1 Hierarchy ID (0 for v2 hierarchy)
Can be matched to hierarchy ID in another file,
/proc/cgroups (but that file is not so interesting)

2 Comma-separated list of controllers bound to the hierarchy
Field is empty for v2 hierarchy

3 Pathname of cgroup to which this process belongs
Pathname is relative to cgroup root directory

On a system booted in v2-only mode, there is just one line in
this file (0::...)

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-22 §14.4

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Notes for online practical sessions

Small groups in breakout rooms
Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room
I will circulate regularly between rooms to answer questions
Zoom has an “Ask for help” button...
Keep an eye on the #general Slack channel

Perhaps with further info about exercise;
Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-24 §14.5

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”
Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can
Turn on line numbering in your editor

In vim use: :set number
In emacs use: M-x display-line-numbers-mode <RETURN>

M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu
In emacs, the following should suffice:
M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-25 §14.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:
$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel
Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type
Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-26 §14.5

Booting to cgroups v2

In preparation for the following exercises, if necessary reboot your
system to use cgroups v2 only, as follows...
First, check whether your system is already booted to use cgroups v2
only:
$ grep cgroup2 /proc/mounts # Is there a v2 mount?
cgroup2 /sys/fs/cgroup cgroup2 ...
$ grep cgroup /proc/mounts | grep -v name= | grep -vc cgroup2
0 # 0 == no v1 controllers are mounted

If there is a v2 mount, and no v1 controllers are mounted, then you
do not need to do anything further; otherwise:

From the GRUB boot menu, you can boot to cgroups v2–only mode by
editing the boot command (select a GRUB menu entry and type “e”).
In the line that begins with “linux”, add the following parameter:
systemd.unified_cgroup_hierarchy

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-27 §14.5

Exercises

1 In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).
Execute the following command, and note the PID assigned to the
resulting process:
sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.
Now write the PID of the process into the file m2/cgroup.procs.
Is the PID still visible in the file m1/cgroup.procs? Explain.
Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?
If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-28 §14.5

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Enabling and disabling controllers

Each cgroup v2 directory contains two files:
cgroup.controllers: lists controllers that are available in
this cgroup
cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

Always a subset of cgroup.controllers

Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-30 §14.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

cgroup.controllers lists the controllers that are available
in a cgroup
Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

devices, freezer, network, perf_event

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-31 §14.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

A controller may not be available because:
Controller is not enabled in parent cgroup

(Does not apply for “automatic” controllers)
The same controller is already in use in cgroups v1

Cgroups v1 and v2 can coexist, but a controller can be used in
only one version

Kernel was built without support for that controller
Controller was disabled at boot time

Using the boot option cgroup_disable=name[,...]

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-32 §14.6

Enabling controllers: cgroup.subtree_control

cgroup.subtree_control is used to show or modify the set
of controllers that are enabled in a cgroup:
cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

I.e., can’t enable controller that is not available in a cgroup
Controllers are enabled/disabled by writing to this file:
echo '+cpuset' > cgroup.subtree_control # Enable a controller
cat cgroup.subtree_control
cpuset cpu io memory pids
echo '-cpuset' > cgroup.subtree_control # Disable a controller
cat cgroup.subtree_control
cpu io memory pids

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-33 §14.6

Enabling controllers: cgroup.subtree_control

Enabling a controller in cgroup.subtree_control:
Allows resource to be controlled in child cgroups
Causes controller-specific attribute files to appear in
each child directory

Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

This is a significant difference from cgroups v1

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-34 §14.6

cgroup.subtree_control example

Review situation in root cgroup:
cd /sys/fs/cgroup/
cat cgroup.controllers
cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control
cpu io memory pids

Create a small subhierarchy:
mkdir -p grp_x/grp_y

Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:
cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

Consequently, no controllers are available in grp_y:
cat grp_x/grp_y/cgroup.controllers # Empty...

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-35 §14.6

cgroup.subtree_control example

List cpu.* files in grp_y:
cd /sys/fs/cgroup/grp_x
ls grp_y/cpu.*
grp_y/cpu.pressure grp_y/cpu.stat

(These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:
echo '+cpu' > cgroup.subtree_control
ls grp_y/cpu.*
grp_y/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp_y/cpu.weight

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-36 §14.6

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...
Set hard CPU limit of 50% in child cgroup (grp_y):
echo '50000 100000' > grp_y/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:
echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:
$./cpu_burner
[6445] %CPU = 99.86
[6445] %CPU = 99.83
...
[6445] %CPU = 83.52
[6445] %CPU = 50.00
[6445] %CPU = 50.00
...

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-37 §14.6

Managing controllers to differing levels of granularity

A controller is available in child cgroup only if it is enabled
in parent cgroup:
cat cgroup.controllers
cpuset cpu io memory hugetlb pids
cat cgroup.subtree_control
cpu memory pids
cat grp1/cgroup.controllers
cpu memory pids

cpuset, io, and hugetlb are not available in grp1

In grp1, none of the available controllers is initially enabled,
so no controllers are available at next level:
cat grp1/cgroup.controllers
cpu memory pids
cat grp1/cgroup.subtree_control # Empty
mkdir grp1/{grp10,grp11} # Make grandchild cgroups
cat grp1/grp2/cgroup.controllers # Empty

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-38 §14.6

Managing controllers to differing levels of granularity

If we enable cpu in grp1, it becomes available at next level
echo '+cpu' > grp1/cgroup.subtree_control
cat grp1/grp10/cgroup.controllers
cpu

And cpu interface files appear in grp1/{grp10,grp11}
Here, cpu is being managed at finer granularity than memory

We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grp11
But we can’t make distinct memory allocation decisions

grp10 and grp11 will share memory allocation from grp1

We did this by design (so we can manage different
resources to different levels of granularity):

We want distinct CPU allocations in grp10 and grp11
We want grp10 and grp11 to share a memory allocation

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-39 §14.6

Top-down constraints

Child cgroups are always subject to any resource constraints
established in ancestor cgroups

⇒ Descendant cgroups can’t relax constraints imposed by
ancestor cgroups

If a controller is disabled in a cgroup (i.e., not present in
cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-40 §14.6

No internal tasks rule

Cgroups v2 enforces a rule often expressed as: “a cgroup
can’t have both child cgroups and member processes”

I.e., only leaf nodes can have member processes
The “no internal tasks” rule

But the rule more precisely is:
A cgroup can’t both:

distribute a resource to child cgroups (i.e., enable controllers
in cgroup.subtree_control), and
have member processes

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-41 §14.6

No internal tasks rule

Revised statement: “A cgroup can’t both distribute resources
and have member processes”
Conversely (1):

A cgroup can have member processes and child cgroups...
if it does not enable controllers for child cgroups

Conversely (2):
If cgroup has child cgroups and processes, the processes must
be moved elsewhere before enabling controllers

E.g., processes could be moved to child cgroups

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-42 §14.6

No internal tasks rule

Further details on the no internal tasks rule:
The root cgroup is (necessarily) an exception to this rule
The rule is irrelevant for “automatic” controllers

Because those controllers (e.g., freezer, devices) are
always available (i.e., don’t need to be enabled)

" The rule changed for certain controllers in Linux 4.14
(The so-called “threaded controllers”)

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-43 §14.6

Outline
14 Cgroups: Introduction 14-1
14.1 Preamble 14-3
14.2 What are control groups? 14-6
14.3 An example: the pids controller 14-12
14.4 Creating, destroying, and populating a cgroup 14-16
14.5 Exercises 14-23
14.6 Enabling and disabling controllers 14-29
14.7 Exercises 14-44

Exercises

1 This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

To simplify the following steps, change your current directory to
the cgroup root directory (/sys/fs/cgroup).
Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:
mkdir xxx
mkdir xxx/yyy
echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:
echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-45 §14.7

Exercises

In another terminal, use the supplied cgroups/fork_bomb.c
program.
fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:
$./fork_bomb 30

The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:
echo parent-PID > xxx/yyy/cgroup.procs

In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-46 §14.7

Exercises

2 This exercise demonstrates what happens if we try to enable a
controller in a cgroup that has member processes.

Under the cgroup root directory, create a new cgroup named
child, and enable the memory controller in the root cgroup:
cd /sys/fs/cgroup # or: cd /sys/fs/cgroup/unified
mkdir child
echo '+memory' > cgroup.subtree_control

Start a process running sleep, and place its into the child cgroup:
sleep 1000 &
echo $! > child/cgroup.procs

What happens if we now try to enable the memory controller in the
child cgroup via the following command?
echo '+memory' > child/cgroup.subtree_control

Does the result differ if we reverse the order of the preceding steps
(i.e., enable the controller, then place a process in the cgroup)?

Security and Isolation APIs Fundamentals ©2025 M. Kerrisk Cgroups: Introduction 14-47 §14.7

This page intentionally blank

But, here’s a tech talk you might enjoy:

The untold story of BPF
Alexei Starovoitov, Kernel Recipes 2022

https://www.youtube.com/watch?v=DAvZH13725I

https://www.youtube.com/watch?v=DAvZH13725I

