
Building and Using Shared Libraries on Linux

The Dynamic Linker

Michael Kerrisk, man7.org © 2025

October 2025

mtk@man7.org

Outline Rev: # a78d4ecd5a8c

5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

Outline
5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

The dynamic linker

Dynamic linker (DL) == run-time linker == loader
Loads shared libraries needed by program
Performs symbol relocations

By examining dynamic symbol tables (.dynsym) of all objects
Is itself a shared library, but special:

Loaded (by kernel) early in execution of a program
Is statically linked (thus, it has no dependencies itself)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-4 §5.1

Outline
5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

Specifying library search paths in an object

So far, we have two methods of informing the dynamic linker
(DL) of location of a shared library:

LD_LIBRARY_PATH
Installing library in one of the standard directories

Third method: during static linking, we can insert a list of
directories into the executable

A “run-time library path (rpath) list”
At run time, DL will search listed directories to resolve
dynamic dependencies
Useful if libraries will reside in locations that are fixed, but
not in standard list

[TLPI §41.10]
Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-6 §5.2

Defining an rpath list when linking

To embed an rpath list in an executable, use the –rpath
linker option

Multiple –rpath options can be specified ⇒ ordered list
Alternatively, multiple directories can be specified as a
colon-separated list in a single –rpath option

Example:
$ cc -g -Wall -Wl,-rpath,$PWD -o prog prog.c libdemo.so
$ objdump -p prog | grep 'R[UN]*PATH'

RUNPATH /home/mtk/tlpi/code/shlibs/demo
$./prog
Called mod1-x1
Called mod2-x2

Embeds current working directory in rpath list
objdump command allows us to inspect rpath list
Executable now “tells” DL where to find shared library

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-7 §5.2

An rpath improvement: DT_RUNPATH

There are two types of rpath list:
Differ in precedence relative to LD_LIBRARY_PATH
Original type of rpath list has higher precedence

DT_RPATH entry in .dynamic ELF section
This was a design error

User should have full control when using LD_LIBRARY_PATH

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-8 §5.2

An rpath improvement: DT_RUNPATH

Newer rpath type has lower precedence
Gives user possibility to override rpath at runtime using
LD_LIBRARY_PATH (usually what we want)
DT_RUNPATH entry in .dynamic ELF section

Supported in DL since 1999
Use: cc –Wl,-rpath,some-dir-path –Wl,--enable-new-dtags

Since binutils 2.24 (2013): inserts only DT_RUNPATH entry
Before binutils 2.24, inserted DT_RUNPATH and DT_RPATH (to
allow for old DLs that didn’t understand DT_RUNPATH)
Some distros (e.g., Ubuntu, Fedora) default to
–Wl,--enable-new-dtags

If both types of rpath list are embedded in an object,
DT_RUNPATH has precedence (i.e., DT_RPATH is ignored)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-9 §5.2

Shared libraries can have rpath lists

Shared libraries can themselves have dependencies
⇒ can use –rpath linker option to embed rpath lists when
building shared libraries

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-10 §5.2

An object’s rpath list is private to the object

Each object (the main program or a shared library) can have
an rpath...
An object’s (DT_RUNPATH) rpath is used for resolving only its
own immediate dependencies

One object’s rpath doesn’t affect search for any other
object’s dependencies

See example in shlibs/rpath_independent

Old style rpath (DT_RPATH) behaves differently!
The DT_RPATH of object A can be used to find libraries
needed by objects in dependency tree of A
See example in shlibs/rpath_dt_rpath

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-11 §5.2

Outline
5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

Dynamic string tokens

DL understands certain special strings in rpath list
Dynamic string tokens
Written as $NAME or ${NAME}

DL also understands these names in some other contexts
LD_LIBRARY_PATH, LD_PRELOAD, LD_AUDIT
DT_NEEDED (i.e., in dependency lists)

See example in shlibs/dt_needed_dst

dlopen()
See ld.so(8)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-13 §5.3

Dynamic string tokens

$ORIGIN: expands to directory containing program or library
Allow us to write “turn-key” applications:

Installer unpacks tarball containing application with library in
(say) a subdirectory
Application can be executed without installing library in
“standard” location

Application can be linked with:
cc -Wl,-rpath,'$ORIGIN/lib'

" " Use quotes to prevent interpretation of $ by shell!

Example: shlibs/shlib_origin_dst

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-14 §5.3

Dynamic string tokens

$ORIGIN is generally ignored in privileged programs
Privileged = set-UID / set-GID / file capabilities
Prevents security vulnerabilities based on creation of hard
links to privileged programs
Exception: $ORIGIN expansion that leads to path in trusted
directory (e.g., /lib64) is permitted

E.g., allows binary in /bin with rpath such as
$ORIGIN/../$LIB/sub

See comments in glibc’s elf/dl-load.c and
https://amir.rachum.com/shared-libraries/

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-15 §5.3

Dynamic string tokens

Other dynamic string tokens:
$LIB: expands to lib or lib64, depending on architecture

E.g., useful on multi-arch platforms to build/supply 32-bit or
64-bit library, as appropriate
On Debian/Ubuntu expands to (on x86 platforms): lib32 or
lib/x86_64-linux-gnu

$PLATFORM: expands to string corresponding to processor
type (e.g., x86_64, i386, i686, aarch64, aarch64_be)

Rpath entry can include arch-specific directory component
E.g., on IA-32, could provide different optimized library
implementations for i386 vs i686

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-16 §5.3

https://amir.rachum.com/shared-libraries/

Outline
5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

Finding shared libraries at run time

When resolving dependencies in an object’s dynamic dependency
list, DL deals with each dependency string as follows:

If the string contains a slash ⇒ interpret dependency as a
relative or absolute pathname
Otherwise, search for shared library using these rules

1 If object has DT_RPATH list and does not have DT_RUNPATH
list, search directories in DT_RPATH list

2 If LD_LIBRARY_PATH defined, search directories it specifies
For security reasons, LD_LIBRARY_PATH is ignored in “secure”
mode (set-UID and set-GID programs, etc.)

3 If object has DT_RUNPATH list, search directories in that list
4 Check /etc/ld.so.cache for a corresponding entry
5 Search /lib and /usr/lib (in that order)

Or /lib64 and /usr/lib64

[TLPI §41.11]
Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-18 §5.4

Outline
5 The Dynamic Linker 5-1
5.1 The dynamic linker 5-3
5.2 Rpath: specifying library search paths in an object 5-5
5.3 Dynamic string tokens 5-12
5.4 Finding shared libraries at run time 5-17
5.5 Exercises 5-19

Exercises

1 The directory shlibs/mysleep contains two files:
mysleep.c: implements a function, mysleep(nsecs), which prints a
message and calls sleep() to sleep for nsecs seconds.
mysleep_main.c: takes one argument that is an integer string.
The program calls mysleep() with the numeric value specified in
the command-line argument.

Using these files, perform the following steps to create a shared library
and executable in the same directory. (You may find it easiest the write
a script to perform the necessary commands to build the shared library
and executable; you can then modify that script in the next exercise.)

Build a shared library from mysleep.c. (You do not need to
create the library with a soname or to create the linker and soname
symbolic links.)

[Exercise continues on next slide]

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-20 §5.5

Exercises

Compile and link mysleep_main.c against the shared library to
produce an executable that embeds an rpath list with the run-time
location of the shared library, specified as an absolute path
(e.g., use the value of $PWD).
Verify that you can successfully run the executable without the use
of LD_LIBRARY_PATH.

If you find that you can’t run the executable successfully, you
may be able to debug the problem by inspecting the rpath of
the executable:
objdump -p mysleep_main | grep 'R[UN]*PATH'

Try moving (not copying!) both the executable and the shared
library to a different directory. What now happens when you try to
run the executable? Why?

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-21 §5.5

Exercises

2 Now employ an rpath list that uses the $ORIGIN string:
Modify the previous example so that you create an executable with
an rpath list containing the string $ORIGIN/sub.
" Remember to use single quotes around $ORIGIN!
Copy the executable to some directory, and copy the shared library
to a subdirectory, sub, under that directory. Verify that the
program runs successfully.
If you move both the executable and the directory sub (which still
contains the shared library) to a different location, is it still
possible to run the executable?
Suppose you make the executable set-UID-root as follows:
sudo chown root mysleep_main
sudo chmod u+s mysleep_main

What happens when you now try to run the executable?

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 5-22 §5.5

