Linux Security and Isolation APls

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

20 Cgroups: Introduction

20.1 Preamble

20.2 What are control groups?

20.3 An example: the pids controller

20.4 Creating, destroying, and populating a cgroup
20.5 Exercises

20.6 Enabling and disabling controllers

20.7 Exercises

20.8 Appendix: Systemd and cgroups

20-1
20-3
20-9
20-16
20-20
20-28
20-34
20-49
20-53

Outline

20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
Goals

e We'll focus on:
e General principles of operation; goals of cgroups

e The cgroup?2 filesystem

e Interacting with cgroup?2 filesystem using shell commands
o Origin of cgroups v2 (i.e., problems with cgroups v1)

e Differences between cgroups v2 and vl

@ We'll look briefly at some of the controllers

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-4 §20.1

Resources

@ Kernel documentation files
@ V2: Documentation/admin-guide/cgroup-v2.rst

@ V1: Documentation/admin-guide/cgroup-vl/*.rst
@ Before Linux 5.3: Documentation/cgroup-vl/*.txt
@ cgroups(7) manual page
@ Chris Down, 7 years of cgroup v2 (FOSDEM 2023),
https://www.youtube.com/watch?v=LX6fM1IYZcg
@ Neil Brown's (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/
e Thought-provoking ideas on the meaning of grouping & hierarchy
@ https://lwn.net/Articles/484254/ — Tejun Heo's initial thoughts
about redesigning cgroups (Feb 2012)

@ See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

@ Other articles at https://1lwn.net/Kernel/Index/#Control_groups

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-5 §20.1

Some history

@ 2006/2007, “Process Containers” @ Google = Cgroups v1

@ Jan 2008: initial mainline kernel release (Linux 2.6.24)
o Three resource controllers (all CPU-related) in initial release

@ Subsequently, other controllers are added

e memory, devices, freezer, net_cls, blkio...

@ But a few years of uncoordinated design leads to a mess

e Decentralized design fails us... again

@ 2012: work has already begun on cgroups v2...

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-6 §20.1

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

Some history

@ Sep 2015: systemd adds cgroup v2 support
o (Based on kernel 4.2)

@ Mar 2016: cgroups v2 officially released (Linux 4.5)

e But, lacks feature parity with cgroups v1

@ Jan 2018: cpu and devices controllers are released for
cgroups v2

o (Absence had been major roadblock to adoption of v2)
@ Oct 2019: Fedora 31 is first distro to move to v2-by-default
@ 2020: Docker 20.10 gets cgroups v2 support

@ Later: other distros move to v2-by-default
e 2021: Debian 11.0; Ubuntu 21.10; Arch

o openSUSE (20247)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-7 §20.1

We have passed the tipping point

@ We have passed the v1-to-v2 tipping point:

e systemd, Docker and other tools fully support cgroups v2,
and the distros have migrated to v2

e Cgroups v2 offers a number of advantages over vl

@ = we'll focus on cgroups v2, and later look at how v1 is
different

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-8 §20.1

Outline

20 Cgroups: Introduction 20-1

20.2 What are control groups? 20-9

What are control groups?

@ Two principal components:
e A mechanism for hierarchically grouping processes

o A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

@ Interface is via a pseudo-filesystem

@ Cgroup manipulation takes form of filesystem operations,
which might be done:

e Via shell commands

e Programmatically

e Via management daemon, e.g., systemd
o (See appendix)

e Via your container framework's tools (e.g., LXC, Docker)

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-10 §20.2

What do cgroups allow us to do?

@ Limit resource usage of group

o E.g., limit % of CPU available to group; limit amount of
memory that group can use

@ Resource accounting

e Measure resources used by processes in group
Limit device access
Pin processes to CPU cores

Shape network traffic

Freeze a group
o Freeze, restore, and checkpoint a group

@ And more...

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-11 §20.2

Terminology

@ Control group: a group of processes that are bound
together for purpose of resource management

o (Resource) controller: kernel component that controls or
monitors processes in a cgroup

e E.g., memory controller limits memory usage; cpu controller
limits CPU usage

e Also known as subsystem
e (But that term is rather ambiguous because so generic)

@ Cgroups are arranged in a hierarchy
e Each cgroup can have zero or more child cgroups

e Child cgroups inherit control settings from parent

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-12 §20.2

Filesystem interface

@ Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

o l.e., use mkdir(2) / rmdir(2) (or equivalent shell commands)
to create cgroups

@ Each subdirectory contains automagically created files
e Some files are used to manage the cgroup itself

e Other files are controller-specific

@ Files in cgroup are used to:
o Define/display membership of cgroup

e Control behavior of processes in cgroup

o Expose information about processes in cgroup (e.g.,
resource usage stats)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-13 §20.2

The cgroup? filesystem

@ On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup

o (or /sys/fs/cgroup/unified, if systemd is operating in
cgroups “hybrid” mode)

mount -t cgroup2 none /sys/fs/cgroup

@ The (pseudo)filesystem type is “cgroup2”
e In cgroups vl, filesystem type is “cgroup”

@ The cgroups v2 mount is sometimes known as the “unified
hierarchy”

e Because all controllers are associated with a single hierarchy

e By contrast, in vl there were multiple hierarchies

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-14 §20.2

Booting to cgroups v2

@ You may be on a distro that uses systemd's “hybrid” mode
by default

e Hybrid mode combines use of cgroups v1 and v2

@ Problem: can't simultaneously use a controller in both v1
and v2

@ Simplest solution is usually to reboot, so that systemd
abandons its hybrid mode, and uses just v2

e If this shows a value > 1, then you need to reboot:

$ grep -c cgroup /proc/mounts # Count cgroup mounts

e Either: use kernel boot parameter, cgroup_no_v1:
@ cgroup_no_vl=all = disable all vl controllers

e Or: use systemd.unified_cgroup_hierarchy boot

parameter
Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-15 §20.2
Outline
20 Cgroups: Introduction 20-1

20.3 An example: the pids controller 20-16

Example: the pids controller

@ pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

@ Create new cgroup, and place shell's PID in that cgroup:

mkdir /sys/fs/cgroup/mygrp
echo $$
17273

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e cgroup.procs defines/displays PIDs in cgroup
o (Note '#' prompt = all commands done as superuser)

@ Moving a PID into a group automatically removes it from
group of which it was formerly a member

e l.e., a process is always a member of exactly one group in the
hierarchy

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-17 §20.3

Example: the pids controller

@ Can read cgroup.procs to see PIDs in group:

cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

e Where did PID 20591 come from?

e PID 20591 is cat command, created as a child of shell
@ Child process inherits cgroup membership from parent

@ pids.current shows how many processes are in group:

cat /sys/fs/cgroup/mygrp/pids.current
2

e Two processes: shell + cat

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-18 §20.3

Example: the pids controller

@ We can limit number of PIDs in group using pids.max file:

echo 5 > /sys/fs/cgroup/mygrp/pids.max

for a in $(seq 1 5); do sleep 60 & done

[1] 21283

[2] 21284

[3] 21285

[4] 21286

bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

o (The shell retries a few times and then gives up)
e pids.max defines/exposes limit on number of PIDs in cgroup

@ From a different shell, examine pids.current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

o Not possible from first shell (can’t create more processes)

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-19 §20.3
Outline
20 Cgroups: Introduction 20-1

20.4 Creating, destroying, and populating a cgroup 20-20

Creating cgroups

@ Initially, all processes on system are members of root cgroup

@ New cgroups are created by creating subdirectories under
cgroup mount point:

mkdir /sys/fs/cgroup/mygrp

@ Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-21 §20.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory
@ Empty == last process in cgroup terminates or migrates to

another cgroup and last child cgroup is removed

e Presence of zombie process does not prevent removal of
cgroup directory

e (Notionally, zombies are moved to root cgroup)

@ Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-22 §20.4

Placing a process in a cgroup

@ To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e In multithreaded process, moves all threads to cgroup

e /\ Can write only one PID at a time
o Otherwise, write() fails with EINVAL

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-23 §20.4

Viewing cgroup membership

@ To see PIDs in cgroup, read cgroup.procs file
e PIDs are newline-separated

e Zombie processes do not appear in list

e /\ List is not guaranteed to be sorted or free of
duplicates

e PID might be moved out and back into cgroup or recycled
while reading list

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-24 §20.4

Cgroup membership details

@ A process can be member of just one cgroup
e That association defines attributes / parameters that apply
to the process

@ Adding a process to a different cgroup automatically removes
it from previous cgroup

@ On fork(), child inherits cgroup membership(s) of parent
o Afterward, cgroup membership(s) of parent and child can be

independently changed

e Since Linux 5.7 (2020), a child process can be created in a
specific v2 cgroup using clone3() CLONE_INTO_CGROUP
@ See procexec/t_CLONE_INTO_CGROUP.c

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-25 §20.4

/proc/PID/cgroup file

@ /proc/PID/cgroup shows cgroup memberships of PID

8:cpu,cpuacct:/cpugrp3
7:freezer:/

0::/grpl

@ Hierarchy ID (0 for v2 hierarchy)

e Can be matched to hierarchy ID in another file,
/proc/cgroups (but that file is not so interesting)

©@ Comma-separated list of controllers bound to the hierarchy
e Field is empty for v2 hierarchy

© Pathname of cgroup to which this process belongs
e Pathname is relative to cgroup root directory

@ On a system booted in v2-only mode, there is just one line in
this file (0::...)

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-26 §20.4

Killing all processes in a cgroup

@ Writing “1” to cgroup.kill kills all processes in a cgroup
e Action is recursive

@ l.e., processes in descendant cgroups are also killed
e Processes are killed using SIGKILL
o File is write-only, and available only in non-root cgroups :-)
@ Available since Linux 5.14 (2021)

@ Example use cases:

o Service managers (e.g., systemd) can kill all processes in a
service

o User-space “out-of-memory” (OOM) handlers can
quickly/easily kill an entire cgroup

e Handle some kill-container use cases that can't be handled
by killing container PID 1

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-27 §20.4
Outline
20 Cgroups: Introduction 20-1

20.5 Exercises 20-28

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions

@ Zoom has an “Ask for help” button...

o Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-29 §20.5

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the

font size with Control+4Shift+"+" and Control+"-
@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
o Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4Shift+:

org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-30 §20.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: :

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-31 §20.5

Booting to cgroups v2

@ In preparation for the following exercises, if necessary reboot your
system to use cgroups v2 only, as follows...

@ First, check whether your system is already booted to use cgroups v2

only:
$ grep cgroup2 /proc/mounts # Is there a v2 mount?
cgroup?2 /sys/fs/cgroup cgroup2 ...
$ grep cgroup /proc/mounts | grep -v name= | grep -vc cgroup2
0 == no vl controllers are mounted

@ If there is a v2 mount, and no v1 controllers are mounted, then you
do not need to do anything further; otherwise:

@ From the GRUB boot menu, you can boot to cgroups v2—only mode by
editing the boot command (select a GRUB menu entry and type “e").
In the line that begins with “1inux”, add the following parameter:

systemd.unified_cgroup_hierarchy

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-32 §20.5

Exercises

© In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.
e Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).
e Execute the following command, and note the PID assigned to the
resulting process:

sleep 300 &

@ Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

@ Now write the PID of the process into the file m2/cgroup.procs.
@ Is the PID still visible in the file m1/cgroup.procs? Explain.

@ Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?

e If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-33 §20.5
Outline
20 Cgroups: Introduction 20-1

20.6 Enabling and disabling controllers 20-34

Enabling and disabling controllers

@ Each cgroup v2 directory contains two files:
e cgroup.controllers: lists controllers that are available in
this cgroup

e cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

e Always a subset of cgroup.controllers

@ Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-35 §20.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ cgroup.controllers lists the controllers that are available
in a cgroup

@ Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

e devices, freezer, network, perf_event

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-36 §20.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ A controller may not be available because:
e Controller is not enabled in parent cgroup
@ (Does not apply for “automatic” controllers)

e The same controller is already in use in cgroups vl

@ Cgroups vl and v2 can coexist, but a controller can be used in
only one version

e Kernel was built without support for that controller

e Controller was disabled at boot time
e Using the boot option cgroup_disable=namel,...]

org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-37 §20.6

Enabling controllers: cgroup.subtree control

@ cgroup.subtree_control is used to show or modify the set
of controllers that are enabled in a cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

e Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

@ Contents of cgroup.subtree control are always a subset
of cgroup.controllers
e l.e., can't enable controller that is not available in a cgroup

@ Controllers are enabled/disabled by writing to this file:

echo '+cpuset' > cgroup.subtree_control # Enable a controller
cat cgroup.subtree_control

cpuset cpu io memory pids

echo '-cpuset' > cgroup.subtree_control # Disable a controller
cat cgroup.subtree_control

cpu io memory pids

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-38 §20.6

Enabling controllers: cgroup.subtree control

@ Enabling a controller in cgroup.subtree control:
e Allows resource to be controlled in child cgroups

e Causes controller-specific attribute files to appear in
each child directory

@ Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

e This is a significant difference from cgroups v1

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-39 §20.6

cgroup.subtree_control example

@ Review situation in root cgroup:

cd /sys/fs/cgroup/

cat cgroup.controllers

cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control

cpu io memory pids

@ Create a small subhierarchy:

mkdir -p grp_x/grp_y

@ Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:

cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

@ Consequently, no controllers are available in grp_y:

cat grp_x/grp_y/cgroup.controllers # Empty...

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-40 §20.6

cgroup.subtree_control example

List cpu. * files in grp_y:

cd /sys/fs/cgroup/grp_x
1ls grp_y/cpu.x*
grp_y/cpu.pressure grp_y/cpu.stat

o (These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:

echo '+cpu' > cgroup.subtree_control

1s grp_y/cpu.x*

grp yv/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp v/cpu.weight

.org

Linux Security and

Isolation APls ©2025 M. Kerrisk Cgroups: Introduction 20-41 §20.6

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...

Set hard CPU limit of 50% in child cgroup (grp_y):

echo '50000 100000' > grp_y/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:

echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:

$./cpu_burner

[6445] JCPU = 99.86
[6445] JCPU = 99.83
[6445] JCPU = 83.52
[6445] YCPU = 50.00
[6445] JCPU = 50.00

.org

Linux Security and

Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-42 §20.6

Managing controllers to differing levels of granularity

@ A controller is available in child cgroup only if it is enabled
in parent cgroup:

cat cgroup.controllers

cpuset cpu io memory hugetlb pids
cat cgroup.subtree control

cpu memory pids

cat grpl/cgroup.controllers

cpu memory pids

e cpuset, io, and hugetlb are not available in grpl

@ In grpl, none of the available controllers is initially enabled,
so no controllers are available at next level:

cat grpl/cgroup.controllers
cpu memory pids

cat grpl/cgroup.subtree_control # Empty
mkdir grpl/{grp10,grpil} # Make grandchild cgroups
cat grpl/grp2/cgroup.controllers # Empty
Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-43 §20.6

Managing controllers to differing levels of granularity

@ If we enable cpu in grpl, it becomes available at next level

echo '+cpu' > grpl/cgroup.subtree_control
cat grpl/grpl0/cgroup.controllers
cpu

e And cpu interface files appear in grpl/{grp10,grpii}

@ Here, cpu is being managed at finer granularity than memory
e We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grpll
e But we can’t make distinct memory allocation decisions
@ grpl0 and grpill will share memory allocation from grpl
e We did this by design (so we can manage different
resources to different levels of granularity):
o We want distinct CPU allocations in grp10 and grpi1

e We want grp10 and grpi1l to share a memory allocation

.org

Linux Security and Isolation APls ©2025 M. Kerrisk Cgroups: Introduction 20-44 §20.6

Top-down constraints

@ Child cgroups are always subject to any resource constraints
established in ancestor cgroups

e = Descendant cgroups can't relax constraints imposed by
ancestor cgroups

@ If a controller is disabled in a cgroup (i.e., not present in

cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-45 §20.6

No internal tasks rule

@ Cgroups v2 enforces a rule often expressed as: “a cgroup
can't have both child cgroups and member processes”

e l.e., only leaf nodes can have member processes
e The “no internal tasks” rule
@ But the rule more precisely is:

e A cgroup can't both:

e distribute a resource to child cgroups (i.e., enable controllers
in cgroup.subtree_control), and

@ have member processes

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-46 §20.6

No internal tasks rule

@ Revised statement: “A cgroup can’'t both distribute resources
and have member processes”

e Conversely (1):
e A cgroup can have member processes and child cgroups...

e if it does not enable controllers for child cgroups

o Conversely (2):
e If cgroup has child cgroups and processes, the processes must
be moved elsewhere before enabling controllers

e E.g., processes could be moved to child cgroups

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-47 §20.6

No internal tasks rule

Further details on the no internal tasks rule:
@ The root cgroup is (necessarily) an exception to this rule

@ The rule is irrelevant for “automatic” controllers

o Because those controllers (e.g., freezer, devices) are
always available (i.e., don't need to be enabled)

@ /\ The rule changed for certain controllers in Linux 4.14
o (The so-called “threaded controllers™)

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-48 §20.6

Outline

20 Cgroups: Introduction 20-1
20.7 Exercises 20-49
Exercises

© This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

e To simplify the following steps, change your current directory to
the cgroup root directory (/sys/fs/cgroup).

e Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:

mkdir xxx

mkdir xxx/yyy

echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

H H HH

@ Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:

echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-50 §20.7

Exercises

@ In another terminal, use the supplied cgroups/fork_bomb.c
program.

fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:

$./fork_bomb 30

@ The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:

echo parent-PID > xxx/yyy/cgroup.procs

@ In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-51 §20.7

Exercises

© This exercise demonstrates what happens if we try to enable a
controller in a cgroup that has member processes.

@ Under the cgroup root directory, create a new cgroup named
child, and enable the memory controller in the root cgroup:

cd /sys/fs/cgroup # or: cd /sys/fs/cgroup/unified
mkdir child
echo '+memory' > cgroup.subtree_control

@ Start a process running sleep, and place its into the child cgroup:

sleep 1000 &
echo $! > child/cgroup.procs

e What happens if we now try to enable the memory controller in the
child cgroup via the following command?

echo '+memory' > child/cgroup.subtree_control

@ Does the result differ if we reverse the order of the preceding steps
(i.e., enable the controller, then place a process in the cgroup)?

org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-52 §20.7

Outline

20 Cgroups: Introduction 20-1

20.8 Appendix: Systemd and cgroups 20-53

Systemd slices

@ Systemd makes heavy use of cgroups
e And provides a CLI for managing cgroups

@ Organizes cgroups into slices—(sub)hierarchies of related
cgroups
e Slices are used to organize services, scopes, and other slices
@ Systemd manages cgroups in two principal slices:
e system.slice: cgroups used to manage system services

e user.slice: cgroups used to manage user sessions and
processes

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-54 §20.8

Systemd and cgroups

@ In the systemd model, processes are grouped in “units”, with
associated cgroups

@ Units are either:
e Persistent: preconfigured units created on system boot,
according to specifications in unit files

e Transient: units created on-the-fly to run commands;
disappear on command termination

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-55 §20.8

Systemd services and scopes

@ A service is a daemon or long-running process launched by
systemd
e Service is started and managed by systemd
e Characteristics of service are defined via a unit file

e Placed in cgroup with name suffixed by “.service”

@ A scope is a cgroup subhierarchy for managing externally
created processes
o l.e., used for a set of processes not created directly by
systemd
e E.g., processes started by a window manager, interactive user
session, a web browser, or systemd-run

e No associated unit file; instead created programmatically via
systemd’s D-Bus API

e Placed in cgroup with name suffixed by “.scope”

org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-56 §20.8

systemd-cgls: show cgroup contents

@ systemd-cgls lists cgroup hierarchy with member processes

$ systemd-cgls

CGroup /:

-.slice
user.slice
-user-0.slice

| | Luser@0.service ...

11372 (sd-pam)
ser-1000.slice
—user@1000.service ...

L-init.scope
t:11370 /usr/1lib/systemd/systemd --user
u

app.slice
app-org.gnome.Terminal.slice
2124788 bash
| 2130001 systemd-cgls

@ |t is possible to list just part of the hierarchy:

$ systemd-cgls /sys/fs/cgroup/user.slice/user-1000.slice/user@1000.service

org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-57 §20.8

systemd-cgtop: list resource usage by cgroup

@ systemd-cgtop lists cgroups with resource usage (CPU,

memory, |/0)

$ systemd-cgtop

CGroup Tasks %CPU Memory Input/s Output/s
/ 1747 133.7 15G 73.9M 22.6M
user.slice 1278 116.7 47.3G 73.9M 39.6K
user.slice/user-1000.slice 1270 116.8 45.8G 73.9M 39.6K
user.slic.../user@1000.service 12561 116.8 45.8G 73.9M 39.6K
system.slice 137 0.2 7.8G - -
system.sl...stemd-oomd.service 1 0.1 1.5M - -
system.slice/tuned.service 4 0.0 19.5M = =
system.sl...md-userdbd.service 4 0.0 4.3M = =

e Ordered by highest resource usage (CPU, by default)
o Constantly refreshed (in fashion of top(1))
@ To list part of hierarchy:

$ systemd-cgtop user.slice/user-1000.slice/user@1000.service/app.slice

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-58 §20.8

systemd-run: run program in a systemd transient unit

@ systemd-run runs a command in a new transient unit:

$ sudo systemd-run --scope -p CPUQuota=50) lsp/timers/cpu_burner
Running as unit: run-r362eaelOdccl14fe184£224ef506b88cd.scope;
invocation ID: 2b42484dbbd2470eb7c53dabb8608bba

[2149503] %CPU = 51.41 (0)
[2149503] %CPU = 49.84 (1)
[2149503] %CPU = 49.94 (2)

@ Displays a run unit identifier we can use in other commands

@ --scope runs command in a "scope" unit, rather than a
"service" unit

e Main purpose here: associates run unit with terminal, so we
can see stdout
@ —p is used to set a resource limit for cgroup
e Can be specified multiple times, to set multiple limits

o systemd.resource-control(5) documents the various limits
that can be set

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-59 §20.8

systemctl status: view status of a systemd unit

@ systemct/ status shows info about a systemd unit:

$ systemctl status run-r362eaelOdcc14fe184£224ef506b88cd.scope
e run-r362eaelldcc....scope - /home/mtk/lsp/timers/cpu_burner

Loaded: loaded (/run/systemd/transient/run-r362eae....scope; transient

Transient: yes

Active: active (running) since Sat 2025-03-01 10:55:07 NZDT; 35min ago

Invocation: 2b42484dbbd2470eb7c53dabb8608b5a
Tasks: 1 (limit: 76492)
Memory: 156K (peak: 548K)
CPU: 3.189s
CGroup: /system.slice/run-r362eael0dccl14fel184f224ef506b88cd.scope
L-2149503 /home/mtk/lsp/timers/cpu_burner

e Includes number of tasks, CPU + memory usage, and cgroup

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-60 §20.8

systemct! set-property: set resource limits

@ systemct! set-property allows us to change limits associated
with a systemd unit:

$ sudo systemctl set-property run-r362eaelOdcc[...] CPUQuota=20Y

@ Returning to terminal window where cpu__burner is running,

Wwe S€e€:

[2149503] J%CPU = 20.30 (13)
[2149503] %CPU = 19.96 (14)
[2149503] %CPU = 20.07 (15)

@ Can set multiple limits in a single command:

$ sudo systemctl set-property run-r362eael...] CPUQuota=20% MemoryMax=500K

o systemd.resource-control(5)

.org

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 20-61 §20.8

Other systemctl commands

@ systemct! freeze, systemct! thaw: freeze and thaw a unit
@ systemct/ stop

e Graceful termination of a unit
@ systemctl kill

e A more forceful termination of a unit

.org

Linux Security and Isolation APlIs ©2025 M. Kerrisk Cgroups: Introduction 20-62 §20.8

