Outline

5 File I/O: Further Details 5-1

5.3 Atomicity 5-17

What's the problem?

@ Suppose we want to write data at end of a file. ..

@ What's wrong with this approach?

lseek(fd, 0, SEEK_END);
write(fd, buf, len);

@ Race condition: Another program might append data to file
between Iseek() and write()

o = we will overwrite that data

@ Need to ensure two steps are executed atomically

e i.e., no other process / thread can operate on file between
two steps

@ Solution: open() 0_APPEND flag
o = write() atomically seeks to EOF and writes

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-18 §5.3

Atomicity

Various parts of system call API provide an atomicity guarantee
that is necessary to achieve correct results

@ Another example: ensuring we are creator of a file
e Wrong way:
e open once without 0_CREAT;
o if that fails (with ENOENT), open a second time with O_CREAT

e Right way: open(..., 0 CREAT | O_EXCL, ...)
e Atomically check that file does not exist and if so, create it

[TLPI §5.1]
Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-19 §5.3
Outline
5 File 1/0O: Further Details 5-1

5.4 Relationship between file descriptors and open files 5-20

Relationship between file descriptors and open files

@ Multiple file descriptors can refer to same open file

@ 3 kernel data structures describe relationship:

Process A Table of open file Inode table
File descriptor table descriptions (system-wide) (system-wide)
fd | file file |[status |inode file metadata;
flags | ptr offset| flags | ptr data block ptrs
fdo N |
fd1 +—
12 23 - > 224
fd 20 B
1976
Process B 73
File descriptor table
fd | file
flags | ptr 86
fdo
fd1
02 5139
fd3
.org
Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-21 §5.4

File descriptor table

Per-process table with one entry for each FD opened by process:
@ Flags controlling operation of FD (close-on-exec flag)
@ Reference to open file description

@ struct fdtable in include/linux/fdtable.h

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-22 §5.4

Table of open file descriptions (open file table)

System-wide table, one entry for each open file on system:
@ File offset
@ File access mode (R / W / R-W, from open())
o File status flags (from open())
@ Reference to inode object for file
@ struct file in include/linux/fs.h
Following terms are commonly treated as synonyms:
e open file description (OFD) (POSIX)

@ open file table entry or open file handle
e /\ Ambiguous terms; POSIX terminology is preferable

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-23 §5.4

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:
o File type (regular file, FIFO, socket, ...)
@ File permissions
@ Other file properties (size, timestamps, .. .)

@ struct inode in include/linux/fs.h

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-24 §5.4

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD
@ Achieved using dup() or dup2()

Process A Table of open file Inode table
File descriptor table descriptions (system-wide) (system-wide)
fd | file file [status |inode file metadata;
flags | ptr offset | flags | ptr data block ptrs
fdo |
fdi1 de__
fd2 = -; 23 - - =P 224

fd 20

1976

Process B 73
File descriptor table
fd | file
flags | ptr 86
fdo
fd1
2 5139
fd3
LT
@ man?7.org
Linux/UNIX System Programming ©2025 M. Kerrisk File |/OZ Further Details 5-25 §5.4
Duplicated file descriptors (between processes)
Two processes may have FDs referring to same OFD
e Can occur as a result of fork()
Process A Table of open file Inode table
File descriptor table descriptions (system-wide) (system-wide)
fd | file file [status |inode file metadata;
flags | ptr offset | flags | ptr data block ptrs
fdo
}% 224
fd20
Process B e
File descriptor table
fd | file
flags | ptr /
fdo /
fd1
a2 / 5139
fd3
LT
@ man?7.org
Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-26 §5.4

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

@ Two processes independently open()ed same file

Process A Table of open file Inode table
File descriptor table descriptions (system-wide) (system-wide)
fd | file file |status |inode file metadata;
flags | ptr offset | flags | ptr data block ptrs
fdo P -> 0
fdi1] \
12 T 3 18 5 224
\
\
d 20 AN
e \\
1976
Process B 73 ,/
File descriptor table e
4
fd | file /
flags | ptr P 86 /
o et
fd1
2 § e 5139
fd3 y
Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-27 §5.4

Why does this matter?

@ Two different FDs referring to same OFD share file offset

o (File offset == location for next read()/write())
o Changes (read(), write(), Iseek()) via one FD visible via other
FD

e Applies to both intraprocess & interprocess sharing of OFD

@ Similar scope rules for status flags (0_APPEND, O_SYNC, ...)
e Changes via one FD are visible via other FD
o (fcntl(F_SETFL) and fcntl(F_GETFL))

@ Conversely, changes to FD flags (held in FD table) are
private to each process and FD

@ kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

e Linux-specific

[TLPI §5.4]

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-28 §5.4

Outline

5 File I/O: Further Details 5-1
5.5 Duplicating file descriptors 5-29
A problem

./myprog > output.log 2>&1

@ What does the shell syntax, 2>&1, do?
@ How does the shell do it?

@ Open file twice, once on FD 1, and once on FD 27

e FDs would have separate OFDs with distinct file offsets =
standard output and error would overwrite

o File may not even be open()-able:
@ eg., ./myprog 2>&1 | less

@ Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-30 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup(int origfd);

@ Arguments:
e origfd: an existing file descriptor

@ Returns new file descriptor that refers to same OFD

@ New file descriptor is guaranteed to be lowest available

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-31 §5.5

Duplicating file descriptors

@ FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:

close (STDERR_FILENO) ; /* Frees FD 2 x/
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 %/

@ But what if FD 0 had been closed beforehand?
o dup() would reuse FD 0...
@ We need a better API

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-32 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup2(int origfd, int newfd);

o Like dup(), but uses newfd for the duplicate FD
e Silently closes newfd if it was open

e Close + reuse of newfd is done as an atomic step
e Important: otherwise, newfd might be re-used in between

e Does nothing if newfd == origfd
o Returns new file descriptor (i.e., newfd) on success

o dup2(STDOUT FILENO, STDERR_FILENO);
@ See dup2(2) manual page for more details

[TLPI §5.5]

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-33 §5.5

Understanding dup2(origfd, newfd)

FD table OFD table inode table
origfd I inode-a
. ——— = OFD-a
newfd //w inode-b
- ———=[OFD-b
(]
(]

FD table OFD table inode table

origfd —_— . inode-a
OFD-a

newfd /

@ If newfd was an open FD, OFD-b will be released if newfd was the last
FD that referred to it

@ After dup2(), origfd and newfd share file offset and file status flags

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-34 §5.5

Outline

5 File I/O: Further Details 5-1

5.6 File status flags (and fentl()) 5-35

File status flags

@ Control semantics of 1/0O on a file
o (0O_APPEND, O_NONBLOCK, O_SYNC, ...)

@ Associated with open file description
@ Set when file is opened

@ Can be retrieved and modified using fentl()

[TLPI §5.3]

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-36 §5.6

fentl(): file control operations

#include <fcntl.h>
int fcntl(int fd, int cmd /* , arg */);

Performs control operations on an open file

@ Arguments:
e fd: file descriptor

e cmd: the desired operation
e arg: optional, type depends on cmd
@ Return on success depends on cmd; —1 returned on error

@ Many types of operation
o file locking, signal-driven 1/0, file descriptor flags ...

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-37 §5.6

Retrieving file status flags and access mode

@ Retrieving flags (both access mode and status flags)

int flags = fcntl(fd, F_GETFL);

@ Check access mode

int amode = flags & O0_ACCMODE;
if (amode == O0_RDONLY || amode == O_RDWR)
printf ("File is readable\n");

@ /\ 'read’ and 'write’' are not separate bits!

if (flags & O_RDONLY) /* Wrong!! */
printf ("File is readable\n");

e Access mode is a 2-bit field that is an enumeration:
e 00 == 0 RDONLY; 01 == 0 WRONLY; 10 == 0_RDWR

o (0_ACCMODE == 11,)

@ Access mode can't be changed after file is opened

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-38 §5.6

Retrieving and modifying file status flags

@ Retrieving file status flags

if

int flags = fcntl(fd, F_GETFL);

(flags & 0_NONBLOCK)
printf ("Nonblocking I/0 is in effect\n");

@ Setting a file status flag

int flags = fcntl(fd, F_GETFL); /* Retrieve flags */
flags |= O_APPEND; /* Set "append" bit */
fcentl(fd, F_SETFL, flags); /* Modify flags */

e /\ Not thread-safe...

e (But in many cases, flags can be set when FD is created, e.g., by

open())
@ Clearing a file status flag

int flags = fcntl(fd, F_GETFL); /* Retrieve flags */

flags &= ~0_APPEND; /* Clear "append" bit */
fcentl(£fd, F_SETFL, flags); /* Modify flags */

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-39 §5.6
Outline
5 File 1/0O: Further Details 5-1

5.7 APl summary 5-40

APl summary

// Adjust file offset:
off_t new_offset = lseek(int fd, off_t offset, int whence);
// whence is SEEK_SET / SEEK_CUR / SEEK_END

// Fetch / modify file status flags:

int flags = fcntl(fd, F_GETFL); // Fetch status flags and
// access mode
int fcntl(fd, F_SETFL, flags); // Update status flags
// File descriptor duplication:
int newfd dup(int origfd); // Make lowest unused FD a
// duplicate of 'origfd'
int dup2(int origfd, int newfd); // Make 'newfd' point to same

// object as 'origfd'

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-41 §5.7
Outline
5 File 1/0O: Further Details 5-1

5.8 Exercises 5-42

Exercise

@ Show that duplicate file descriptors share file offset and file status flags by writing a
program ([template: fileio/ex.fd_sharing.c]) that:

@ Implements the function printFileDescriptioninfo(), which, given a file
descriptor as an argument, prints the file descriptor number as well as the file
offset and the state of the 0O_APPEND file status flag associated with that file
descriptor. For readability, all three values should be printed on one line.

@ Opens an existing file (supplied as argv/[1]) and duplicates (dup()) the resulting
file descriptor, to create a second file descriptor.

@ Uses the printFileDescriptioninfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.
@ Initially the file offset will be zero, and the 0_APPEND flag will not be set

@ Changes the file offset (/seek(), slide 5-5) and enables (turns on) the 0_APPEND
file status flag (fentl(), slide 5-39) via the second file descriptor.

@ Uses the printFileDescriptioninfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.

Hints:
@ Remember to update the Makefile!

@ while inotifywait -q . ; do echo -e '\n\n'; make; done

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-43 §5.8

Exercise

Q The program fileio/fd_overwrite_test.c can be used to demonstrate
that if a program opens the same file twice, the two file descriptors do not share a
file offset, and thus writes via one file descriptor will overwrite writes via the other
file descriptor. By contrast, if a program opens the file and duplicates the resulting
file descriptor, then the two file descriptors do share a file offset, and writes via one
file descriptor will not overwrite writes via the other file descriptor. The program is
used with a command-line as follows:

$./fd_overwrite [-d] <file> <string>...

By default, the program open()s the specified file twice, but if the —d option is
specified, then it open()s the file once and duplicates the resulting file descriptor.
The remaining arguments are strings that are alternately written to the two file
descriptors (thus, the first string is written to FD 1, the second to FD 2, the third to
FD 1, and so on).

Run the program with the following two command lines, and explain the output
that appears in the two files:

$./fd_overwrite_test

xaAbBcC
$./fd_overwrite_test -d y a Ab B c C

.org

Linux/UNIX System Programming ©2025 M. Kerrisk File 1/O: Further Details 5-44 §5.8

