Linux/UNIX IPC Programming

POSIX Shared Memory

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

16 POSIX Shared Memory

16.1 Overview

16.2 Creating and opening shared memory objects
16.3 Using shared memory objects

16.4 Synchronizing access to shared memory

16.5 APl summary

16.6 Exercises

16-1
16-3
16-8
16-22
16-31
16-41
16-43

QOutline

16 POSIX Shared Memory 16-1
16.1 Overview 16-3

Shared memory

@ Data is exchanged by placing it in memory pages shared
by multiple processes
e Pages are in user virtual address space of each process

Process A page table Physical memory
Page table entries for
shared memory region

Process B page table

Pages not

< Shared memory region |-—— actually
contiguous

Page table entries for
shared memory region

\ \ ﬁ l

S
J

man?7.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-4 §16.1

Shared memory

e Data transfer is not mediated by kernel
e User-space copy makes data visible to other processes
e = Very fast IPC

o Compare with (e.g.) pipes and sockets:
e Send requires copy from user to kernel memory

@ Receive requires copy from kernel to user memory

@ But, need to synchronize access to shared memory

e E.g., to prevent simultaneous updates

e Commonly, semaphores are used

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-5 §16.1

POSIX shared memory objects

@ Implemented (on Linux) as files in a dedicated tmpfs
filesystem

e tmpfs == memory-based filesystem that employs swap
space when needed

@ Objects have kernel persistence
e Objects exist until explicitly deleted, or system reboots

e Can map an object, change its contents, and unmap
e Changes will be visible to next process that maps object

@ Accessibility: user/group owner + permission mask

org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-6 §16.1

POSIX shared memory APls

@ shm_open(): open existing shared memory (SHM)
object/create and open new SHM object

e Returns file descriptor that refers to open object

ftruncate(): set size of SHM object

mmap(): map SHM object into caller's address space

close(): close file descriptor returned by shm_open()

shm__unlink(): remove SHM object name, mark for deletion
once all processes have closed

e munmap(): unmap SHM object (or part thereof) from
caller’'s address space

@ Compile with cc -1rt
o (No longer needed since glibc 2.34)

@ shm_overview(7) manual page

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-7 §16.1
Outline
16 POSIX Shared Memory 16-1

16.2 Creating and opening shared memory objects 16-8

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines 0_* constants */

#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

@ Creates and opens a new object, or opens an existing object

@ name: name of object (/somename)

@ Returns file descriptor on success, or —1 on error
e This FD is used in subsequent APIs to refer to SHM

o (The close-on-exec flag is automatically set for the FD)

[TLPI §54.2]

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-9 §16.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines 0_* constants */

#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>

int shm_open(const char #*name, int oflag, mode_t mode) ;

oflag specifies flags controlling operation of call
@ 0 _CREAT: create object if it does not already exist

@ 0_EXCL: (with O_CREAT) create object exclusively
e Give error if object already exists

@ 0O RDONLY: open object for read-only access

@ 0O _RDWR: open object for read-write access
e NB: No O_WRONLY flag...

@ 0 _TRUNC: truncate an existing object to zero length
e Contents of existing object are destroyed

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-10 §16.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines 0_* constants */

#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

@ mode: permission bits for new object
o RWX for user / group / other

e ANDed against complement of process umask

o /\ Required argument; specify as 0 if opening existing object

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-11 §16.2

Sizing a shared memory object

@ New SHM objects have length 0O
@ We must set size using ftruncate(fd, size)
e Bytes in newly extended object are initialized to 0

e If existing object is shrunk, truncated data is lost

o Typically, ftruncate() is called before mmap()
@ But the calls can also be in the reverse order

o Can obtain size of existing object using fstat(fd, &statbuf)

e st_size field of stat structure

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-12 §16.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

e Complex, general-purpose API for creating memory
mapping in caller’s virtual address space

e 15+ bits employed in flags
o See TLPI Ch. 49 and mmap(2)
@ We consider only use with POSIX SHM

e In practice, only a few decisions to make
e Usually just length, prot, and maybe offset

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-13 §16.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

e fd: file descriptor specifying object to map
o Use FD returned by shm_open()

o Note: once mmap() returns, fd can already be closed
without affecting the mapping

@ addr: address at which to place mapping in caller’s virtual
address space

e Let's look at a picture...

org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-14 §16.2

Process memory layout (simplified)

argv, environ High virtual

address
Stack
(grows downward)

Memory
(unallocated memory) ~——— mappings

T placed here
Heap
(grows upward)
Uninitialized data (bss)
Initialized data
Text (program code) Low virtual
address
Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-15 §16.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

@ addr: address at which to place mapping in caller’s virtual
address space
e But, this address may already be occupied
@ Therefore, kernel takes addr as only a hint

e Ignored if address is already occupied
e addr == NULL = let system choose address
@ Normally use NULL for POSIX SHM objects
@ mmap() returns address actually used for mapping
e Treat this like a normal C pointer

@ On error, mmap() returns MAP_FAILED

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-16 §16.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

@ length: size of mapping
e Normally should be < size of SHM object
e System rounds up to multiple of system page size
e sysconf(_SC_PAGESIZE)

@ offset: starting point of mapping in underlying file or SHM
object

e Must be multiple of system page size

o Commonly specified as 0 (map from start of object)

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-17 §16.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

@ prot: memory protections
e = set protection bits in page-table entries for mapping
o (Protections can later be changed using mprotect(2))

e PROT_READ: for read-only mapping

PROT_READ | PROT_WRITE: for read-write mapping

Must be consistent with access mode of shm_open()

e E.g., can't specify O_RDONLY to shm_open() and then
PROT_READ | PROT_WRITE for mmap()

Also PROT_EXEC: contents of memory can be executed

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-18 §16.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

@ flags: bit flags controlling behavior of call
e POSIX SHM objects: need only MAP_SHARED

e MAP_SHARED == make caller's modifications to mapped
memory visible to other processes mapping same object

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-19 §16.2

Example: pshm/pshm create _simple.c

./pshm_create_simple /shm-object-name size

@ Create a SHM object with given name and size

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-20 §16.2

Example: pshm/pshm create simple.c

size_t size = atoi(argv[2]);

int fd = shm _open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR|S_IWUSR);

ftruncate(fd, size);

void *addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

© SHM object created with RW permission for user, opened
with read-write access mode

fd returned by shm_open() is used in ftruncate() + mmap()
Same size is used in ftruncate() + mmap()
mmap() not necessary, but demonstrates how it's done

Mapping protections PROT _READ | PROT_WRITE consistent
with 0_RDWR access mode

© 000

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-21 §16.2
Outline
16 POSIX Shared Memory 16-1

16.3 Using shared memory objects 16-22

Using shared memory objects

@ Address returned by mmap() can be used just like any C
pointer

e Usual approach: treat as pointer to some structured type

@ Can read and modify memory via pointer

[TLPI §48.6]

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-23 §16.3

Example: pshm/pshm write.c

./pshm_write /shm-name string

@ Open existing SHM object shm-name and copy string to it

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-24 §16.3

Example: pshm/pshm write.c

int fd = shm_open(argv[1], O_RDWR, 0);

size_t len = strlen(argv[2]);

ftruncate(£fd, len);

printf ("Resized to %1d bytes\n", (long) len);

char *addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);
close(fd); /* 'fd' is no longer needed */

printf ("copying %1d bytes\n", (long) len);
memcpy (addr, argv[2], len);

@ Open existing SHM object

© Resize object to match length of command-line argument
© Map object at address chosen by system

Q Copy argv[2] to object (without '\0")

© SHM object is closed and unmapped on process termination

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-25 §16.3

Example: pshm/pshm read.c

./pshm_read /shm-name

@ Open existing SHM object shm-name and write the
characters it contains to stdout

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-26 §16.3

Example: pshm/pshm read.c

int fd = shm open(argv[1], 0 _RDONLY, 0);

struct stat sb;
fstat(fd, &sb);

char *addr = mmap(NULL, sb.st size, PROT_READ, MAP_SHARED, fd, 0);

close(fd); /* 'fd' is no longer needed */

write (STDOUT FILENO, addr, sb.st size);
write (STDOUT_FILENO, "\n", 1);

@ Open existing SHM object
o Use fstat() to discover size of object
@ Map the object, using size from fstat() (in sb.st_size)

@ Write all bytes from object to stdout, followed by newline

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-27 §16.3

Pointers in shared memory

A little care is required when storing pointers in SHM:
@ Assuming we let system choose address at which to place
SHM (as is recommended practice)
@ = SHM may be placed at different address in each process

@ Suppose we want to build dynamic data structures, with
pointers inside shared memory...

o E.g., linked list

@ = Must use relative offsets, not absolute addresses

e Absolute address has no meaning if mapping is at different
location in another process

[TLPI §48.6]

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-28 §16.3

Pointers in shared memory

@ Suppose we have situation at right

e baseaddr is start of shared target —»
memory region

e Want to store pointer to target in
*
o)
e /\ Wrong way:

p—> —

baseaddr —»

*p = target

@ Correct method (relative offset):

*p = target - baseaddr;

@ To dereference “pointer”:

target = baseaddr + *p;

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-29 §16.3

The /dev/shnm filesystem

On Linux:

@ tmpfs filesystem used to implement POSIX SHM is mounted at
/dev/shm

@ Can list objects in directory with /Is(1)
e /s —/ shows permissions, ownership, and size of each object

$ 1s -1 /dev/shm
“rW-——--—-— . 1 mtk mtk 4096 Oct 27 13:58 myshm
“rW-——--—-— . 1 mtk mtk 32 Oct 27 13:57 sem.mysem

@ POSIX named semaphores are also visible in /dev/shm

e As small SHM objects with names prefixed with “sem.’

e Can delete objects with rm(1)

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-30 §16.3

Outline
16 POSIX Shared Memory 16-1

16.4 Synchronizing access to shared memory 16-31

Synchronizing access to shared memory

@ Accesses to SHM object by different processes must be
synchronized

e Prevent simultaneous updates
e Prevent read of partially updated data
@ Semaphores are a common technique

@ POSIX unnamed semaphores are often convenient, since:
e Semaphore can be placed inside shared memory region
@ (And thus, automatically shared)

e We avoid task of creating name for semaphore

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-32 §16.4

Synchronizing access to shared memory

@ Other synchronization schemes are possible
e E.g., if using SHM to transfer large data volumes:

e Using semaphore pair to force alternating access is expensive
(two context switches on each transfer!)

e Divide SHM into (logically numbered) blocks

@ Use pair of pipes to exchange metadata about filled and
emptied blocks (also integrates with poll()/epoll!)

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-33 §16.4

Example: synchronizing with unnamed semaphores

@ Example application maintains sequence number in SHM
object
@ Source files:
e pshm/pshm_seqnum.h: defines structure stored in SHM
object
e pshm/pshm_seqnum_init.c:
@ Create and open SHM object

e Initialize semaphore and (optionally) sequence number inside
SHM object

e pshm/pshm_seqnum_get.c:
@ Open existing SHM object
e Display current value of sequence number

o (Optionally) increase sequence number value

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-34 §16.4

Example: pshm/pshm seqnum.h

#include <sys/mman.h>
#include <fcntl.h>
#include <semaphore.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

struct shmbuf { /* Shared memory buffer */
sem_t sem; /* Semaphore to protect access */
int seqnum; /* Sequence number */

};

@ Header file used by pshm/pshm seqnum_init.c and
pshm/pshm_seqnum_get.c
@ Includes headers needed by both programs

@ Defines structure used for SHM object, containing:
e Unnamed semaphore that guards access to sequence
number

e Sequence number

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-35 §16.4

Example: pshm/pshm_seqnum_init.c

./pshm_seqnum_init /shm-name [init-value]

@ Create and open SHM object
@ Reset semaphore inside object to 1 (i.e., semaphore available)

@ Initialize sequence number

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-36 §16.4

Example: pshm/pshm seqnum_init.c

shm_unlink(argv([1]);
int fd = shm open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR | S_IWUSR);

ftruncate(fd, sizeof (struct shmbuf));
struct shmbuf *shmp = mmap(NULL, sizeof(struct shmbuf),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
sem_init (&shmp->sem, 1, 1);
if (argc > 2)
shmp->segnum = atoi(argv[2]);

© Delete previous instance of SHM object, if it exists

© Create and open SHM object

© Use ftruncate() to adjust size of object to match structure
@ Map object, using size of structure

© Initialize semaphore state to “available”
e pshared specified as 1, for process sharing of semaphore

O If argv[2] supplied, initialize sequence # to that value
e Newly extended bytes of SHM object are initialized to 0

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-37 §16.4

Example: pshm/pshm_seqnum_get.c

./pshm_seqnum_get /shm-name [run-lengthl]

@ Open existing SHM object

@ Fetch and display current value of sequence number in SHM
object shm-name

@ If run-length supplied, add to sequence number

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-38 §16.4

Example: pshm/pshm_seqnum get.c

int fd = shm open(argv[1], O_RDWR, 0);

struct shmbuf *shmp = mmap(NULL, sizeof (struct shmbuf),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

@ Open existing SHM object

@ Map object, using size of shmbuf structure

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-39 §16.4

Example: pshm/pshm_seqnum_get.c

sem_wait (&shmp->sem) ;
printf ("Current value of sequence number: 7d\n", shmp->seqnum);

if (arge > 2) {

int runlLength = atoi(argv([2]);

if (runLength <= 0)
fprintf (stderr, "Invalid run-length\n");

else {
sleep(3); /* Make update slow */
shmp->segqnum += runlength;
printf ("Updated sequence number\n");

sem_post (&shmp->sem) ;

@ Reserve semaphore before touching sequence number
@ Display current value of semaphore

e If (nonnegative) argv/2] provided, add to sequence number
e Sleep during update, to see that other processes are blocked

@ Release semaphore

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-40 §16.4

Outline

16 POSIX Shared Memory 16-1

16.5 APl summary 16-41

APl summary

int shm_open(const char *name, int oflag, mode_t mode) ;
// Open or create and open shared memory object
// Returns file descriptor

int ftruncate(int fd, off_t length);
// Set size of shared memory object referred to by 'fd'

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);
// Map SHM object referred to by 'fd'

int fstat(int fd, struct stat *statbuf);
// Retrieve 'stat' structure describing SHM object
// (e.g., statbuf->st_size is object size)

int sem_init(sem_t *sem, int pshared, unsigned int value);
// Initialize POSIX unnamed semaphore

// Operations on POSIX semaphores:

int sem_post(sem_t *sem); // Increment
int sem_wait(sem_t *sem); // Decrement

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-42 §16.5

Outline

16 POSIX Shared Memory

16.6 Exercises

16-1

16-43

Exercise

0 Write two programs that exchange a stream of data of arbitrary length via a POSIX

shared memory object [Shared header file: pshm/pshm_xfr.h|:

@ The “writer” creates and initializes the shared memory object and semaphores
used by both programs, and then reads blocks of data from stdin and copies
them a block at a time to the shared memory region
[Template: pshm/ex.pshm_xfr_writer.c]|.

@ The “reader” copies each block of data from the shared memory object to
stdout [Template: pshm/ex.pshm_xfr_reader.c]|.

Note the following points:

Shared
Memory

Reader

@ Use the structure defined in pshm/pshm_xfr.h for your shared memory.

[Exercise continues on next

.org

page]

Linux/UNIX IPC Programming ©2025 M. Kerrisk

POSIX Shared Memory

16-44 §16.6

Exercise

@ You must ensure that the writer and reader have exclusive, alternating access
to the shared memory region (so that, for example, the writer does not copy
new data into the region before the reader has copied the current data to
stdout). The following diagram shows how two semaphores can be used to
achieve this. The semaphores should be initialized as wsem=1 and rsem=0, so
that the writer has first access to the shared memory.

Writer Reader

sem_wait(wsem) sem_wait(rsem)

l Shared memory

v
Transfer data to Transfer data from
A - A

shared memory shared memory

l A 4
sem_post(rsem) sem_post(wsem)

(The simplest approach is to use two unnamed semaphores stored inside the
shared memory object; see the structure definition in pshm/pshm_xfr.h.)

[Exercise continues on next page]

org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-45 §16.6

Exercise

@ When the “writer” reaches end of file, it should provide an indication to the
“reader” that there is no more data. To do this, maintain a byte-count field in
the shared memory region which the “writer” uses to inform the “reader” how
many bytes are to be written. Setting this count to 0 can be used to signal
end-of-file. Once it has sent the last data block, the “writer” should unlink the
shared memory object.

@ Test your programs using a large file that contains random data:

$ dd if=/dev/urandom of=infile count=100000
$./ex.pshm_xfr_writer < infile &

$./ex.pshm_xfr_reader > outfile

$ diff infile outfile

There is also a target in the Makefile for performing this test:

make pshm_xfr_test

[An optional exercise follows on the next page]

.org

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-46 §16.6

Exercise

@ Create a file of a suitable size (e.g., 512 MB in the following):

$ dd if=/dev/urandom of=/tmp/infile count=1000000

Then edit the BUF_SIZE value in the pshm/pshm_xfr.h header file to vary the value
from 10’000 down to 10 in factors of 10, in each case measuring the time required
for the reader to complete execution:

$./ex.pshm_xfr_writer < /tmp/infile &
$ time ./ex.pshm_xfr_reader > /dev/null

What is the reason for the variation in the time measurements?

N

man _‘Ol‘g

Linux/UNIX IPC Programming ©2025 M. Kerrisk POSIX Shared Memory 16-47 §16.6

This page intentionally blank
But, here’s a tech talk you might enjoy:

The Tragedy of systemd
Benno Rice, linux.conf.au, 2019

(A very amusing talk that is not about knocking systemd)

https://www.youtube.com/watch?v=o0_AIw9bGogo

https://www.youtube.com/watch?v=o_AIw9bGogo

