
Linux Capabilities and Namespaces

User Namespaces

Michael Kerrisk, man7.org © 2025

August 2025

mtk@man7.org

Outline Rev: # caf166f4161b

12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44



Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44

Preamble

For even more detail than presented here, see my articles:
Namespaces in operation, part 5: user namespaces,
https://lwn.net/Articles/532593/
Namespaces in operation, part 6: more on user namespaces,
https://lwn.net/Articles/540087/
" See my notes in comments section for some updates

And user_namespaces(7) manual page

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-4 §12.1

https://lwn.net/Articles/532593/ 
https://lwn.net/Articles/540087/


Introduction

Milestone release: Linux 3.8 (Feb 2013)
User NSs can now be created by unprivileged users...

Allow per-namespace mappings of UIDs and GIDs
I.e., process’s UIDs and GIDs inside NS may be different
from IDs outside NS

Interesting use case: process has nonzero UID outside NS,
and UID of 0 inside NS

⇒ Process has root privileges for operations inside user NS
We will learn what this means...

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-5 §12.1

Relationships between user namespaces

User NSs have a hierarchical relationship:
A user NS can have 0 or more child user NSs
Each user NS has parent NS, going back to initial user NS

Initial user NS == sole user NS that exists at boot time
Maximum nesting depth for user NSs is 32

(To prevent extremely long chains of descent, since these need
to be traversed)

Parent of a user NS == user NS of process that created this
user NS using clone() or unshare()

Parental relationship determines some rules about how
capabilities work in NSs (later...)

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-6 §12.1



“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?
We’ve already seen that:

There are a number of NS types
Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name
Mount: set of mounts
Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:
There is an ownership relationship between user NSs and
non-user NSs

I.e., each non-user NS is “owned” by a particular user NS
“root privileges in a user NS” == root privileges on (only)
resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-7 §12.1

User namespaces “govern” other namespace types

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis 

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is 

member o
f

is member of

Understanding this picture is our ultimate goal...

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-8 §12.1



Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44

Creating and joining a user NS

New user NS is created with CLONE_NEWUSER flag
clone() ⇒ child is made a member of new user NS
unshare() ⇒ caller is made a member of new user NS

Can join an existing user NS using setns()
Process must have CAP_SYS_ADMIN capability in target NS

(The capability requirement will become clearer later)

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-10 §12.2



User namespaces and capabilities

A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

It is the child of clone() that creates a new user NS
It creates and joins a new user NS using unshare()
It joins an existing user NS using setns()

But, process has no capabilities in parent/previous user NS
" Even if it was root in that NS!

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-11 §12.2

Example: namespaces/demo_userns.c

./demo_userns

(Very) simple user NS demonstration program
Uses clone() to create child in new user NS
Child displays its UID, GID, and capabilities

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-12 §12.2



Example: namespaces/demo_userns.c

#define STACK_SIZE (1024 * 1024)

int main(int argc, char *argv[]) {
char *stack = mmap(..., STACK_SIZE); /* Allocate memory for

child's stack */
pid_t pid = clone(childFunc, stack + STACK_SIZE,

CLONE_NEWUSER | SIGCHLD, argv[1]);
printf("PID of child: %ld\n", (long) pid);

munmap(stack, STACK_SIZE); /* Deallocate stack */

waitpid(pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Use clone() to create a child in a new user NS
Child will execute childFunc(), with argument argv[1]

Printing PID of child is useful for some demos...
Wait for child to terminate

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-13 §12.2

Example: namespaces/demo_userns.c

static int childFunc(void *arg) {
for (;;) {

printf("eUID = %ld; eGID = %ld; ",
(long) geteuid(), (long) getegid());

cap_t caps = cap_get_proc();
char *str = cap_to_text(caps, NULL);
printf("capabilities: %s\n", str);
cap_free(caps);
cap_free(str);

if (arg == NULL)
break;

sleep(5);
}
return 0;

}

Display PID, effective UID + GID, and capabilities
If arg (argv[1] ) was NULL, break out of loop
Otherwise, redisplay IDs and capabilities every 5 seconds

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-14 §12.2



Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Upon running the program, we’ll see something like the above
Program was run from unprivileged user account
=ep means child process has a full set of permitted and
effective capabilities

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-15 §12.2

Example: namespaces/demo_userns.c

$ id -u # Display effective UID of shell process
1000
$ id -g # Display effective GID of shell process
1000
$ ./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Displayed UID and GID are “strange”
System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides
But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS
⇒ when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid

Unmapped GIDs ⇒ /proc/sys/kernel/overflowgid
Default value, 65534, chosen to be same as NFS nobody ID

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-16 §12.2



Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44

UID and GID mappings

One of first steps after creating a user NS is to define UID
and GID mapping for NS
Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid_map

Each process in user NS has these files; writing to files of any
process in the user NS suffices
Initially, these files are empty

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-18 §12.3



UID and GID mappings

Records written to/read from uid_map and gid_map have
this form:
ID-inside-ns ID-outside-ns length

ID-inside-ns and length define range of IDs inside user NS
that are to be mapped
ID-outside-ns defines start of corresponding mapped range in
“outside” user NS

E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS
0 1000 10

" To properly understand ID-outside-ns, we must first look
at a picture

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-19 §12.3

Understanding UID and GID maps

Initial user NS (NS 0)

1000 1009 1014 1020 1029

Child NS 2

Map: 50 1000 15

50 64

Child NS 1

Map: 0 1000 10

0 9

Child NS 4

Map: 0 1020 10

0 9

Child NS 3

Map: 10 50 10

0 9

10 19

”What does ID X in namespace Y map to in namespace Z?” means
“what is the equivalent ID (if any) in namespace Z?”
What does ID 5 in NS 1 map to in the initial NS (NS 0)?
What does ID 5 in NS 1 map to in NS 2 and NS 3?
What does ID 15 in NS 3 map to in NS 2 and NS 1?
What does the UID 0 in NS 4 map to in NS 1?

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-20 §12.3



Interpretation of ID-outside-ns

" Interpretation(*) of ID-outside-ns depends on whether
“opener” and PID are in same user NS

“opener” == process that is opening + reading/writing
map file
PID == process whose map file is being opened

(*) Note: contents of uid_map/gid_map are generated on the fly by the
kernel, and can be different in different processes

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-21 §12.3

Interpretation of ID-outside-ns

If “opener” and PID are in same user NS:
ID-outside-ns interpreted as ID in parent user NS of PID
Common case: process is writing its own mapping file

If “opener” and PID are in different user NSs:
ID-outside-ns interpreted as ID in opener’s user NS
Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

" Only ID-outside-ns is interpreted; ID-inside-ns and length
are always treated literally

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-22 §12.3



Quiz: reading /proc/PID/uid_map

Initial user NS

Child user NS

uid_map: 200 1000 1

Contains PID 2366

Child user NS

uid_map: 0 1000 1

Contains PID 2571

If PID 2366 reads /proc/2571/uid_map, what should it see?
0 200 1

If PID 2571 reads /proc/2366/uid_map, what should it see?
200 0 1

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-23 §12.3

Example: updating a mapping file

Let’s run demo_userns with an argument, so it loops:
$ id -u # Display user ID of shell
1000
$ id -G # Display group IDs of shell
1000 10
$ ./demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities: =ep

Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:
echo '0 1000 1' > /proc/2810/uid_map

Returning to window where we ran demo_userns, we see:
eUID = 0; eGID = 65534; capabilities: =ep

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-24 §12.3



Example: updating a mapping file

But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:
$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted

There are (many) rules governing updates to mapping files
Inside the new user NS, user is getting full capabilities
It is critical that capabilities can’t leak

I.e., user must not get more privileges than they would
otherwise have outside the NS

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-25 §12.3

Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:
There is a limit on the number of lines that may be written

Since Linux 4.15 (2017): up to 340 lines
340 * 12-byte records: can fit in 4KiB

Linux 4.14 and earlier: up to 5 lines
An arbitrarily chosen limit that was expected to suffice, but
eventually it became an issue for some use cases
5 * 12-byte records: small enough to fit in a 64B cache line

Each line contains 3 valid numbers, with length > 0, and a
newline terminator
The ID ranges specified by the lines may not overlap

(Because that would make IDs ambiguous)

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-26 §12.3



Permission rules for updating mapping files

If any of these “permission” rules are violated when updating
uid_map and gid_map files, write() fails with EPERM:

Each map may be updated only once
Writer must be in target user NS or in parent user NS
The mapped IDs must have a mapping in parent user NS
Writer must have following capability in target user NS

CAP_SETUID for uid_map
CAP_SETGID for gid_map

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-27 §12.3

Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:
Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:

⇒ no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)

Or: otherwise, all of the following restrictions apply:
Only a single line may be written to uid_map (gid_map)
That line maps only the writer’s eUID (eGID)

Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

eUID of writer must match eUID of creator of NS
(eUID restriction also applies for gid_map)

For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

We revisit reasons later

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-28 §12.3



Example: updating a mapping file

Going back to our earlier example:
$ echo '0 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted
$ echo 'deny' > /proc/2810/setgroups
$ echo '0 1000 1' > /proc/2810/gid_map
$ cat /proc/2810/gid_map

0 1000 1

After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

Upon returning to window running demo_userns, we see:
eUID = 0; eGID = 0; capabilities: =ep

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-29 §12.3

Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44



Exercises
If you are using Ubuntu 24.04 or later, you may need to disable an AppArmor setting that
disables the creation of user namespaces by unprivileged users. You can do this using the
following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

1 Try replicating the steps shown earlier on your system:
Use the id(1) command to discover your UID and GID; you will need this
information for a later step.
Run the namespaces/demo_userns.c program with an argument (any string),
so it loops. Verify that the child process has all capabilities.
Inspect (readlink(1)) the /proc/PID/ns/user symlink for the demo_userns
child process and compare it with the /proc/PID/ns/user symlink for a shell
running in the initial user namespace (for the latter, simply open a new shell
window on your desktop). You should find that the two processes are in
different user namespaces.
From a shell in the initial user NS, define UID and GID maps for the
demo_userns child process (i.e., for the UID and GID that you discovered in
the first step). Map the ID-outside-ns value for both IDs to IDs of your choice
in the inner NS.
[Exercise continues on the next slide]

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-31 §12.4

Exercises

This step will involve writing to the uid_map, setgroups, and gid_map
files in the /proc/PID directory.

Verify that the UID and GID displayed by the looping demo_userns program
have changed.

2 What are the contents of the UID and GID maps of a process in the initial user
namespace?

$ cat /proc/1/uid_map

3 U The script namespaces/show_non_init_uid_maps.sh shows the processes on the
system that have a UID map that is different from the init process (PID 1). Included
in the output of this script are the capabilities of each processes. Run this script to
see examples of such processes. As well as noting the UID maps that these processes
have, observe the capabilities of these processes.

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-32 §12.4



Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44

What about accessing files (and other resources)?

Suppose UID 1000 is mapped to UID 0 inside a user NS
What happens when process with UID 0 inside user NS tries
to access file owned by (“true”) UID 0?

UID 0 in initial user NS (“true UID 0”) is sometimes called
global root

When accessing files, IDs are mapped back to values in initial
user NS

UID mappings don’t allow us to bypass traditional UID/GID
permission checks
Same principle for checks on other resources that have
UID+GID owner

E.g., System V IPC objects, POSIX IPC objects, UNIX
domain sockets

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-34 §12.5



Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44

User namespaces are hard (even for kernel developers)

Developer(s) of user NSs put much effort into ensuring
capabilities couldn’t leak from inner user NS to outside NS

Potential risk: some piece of kernel code might not be
correctly refactored to account for distinct user NSs
⇒ unprivileged user who gains all capabilities in child NS
might be able to do some privileged operation in outer NS

User NS implementation touched a lot of kernel code
Maybe some corner case(s) that weren’t correctly handled...
One early case was discovered and fixed in Linux 3.19

The trouble with dropping groups, https://lwn.net/Articles/621612/

Fix required changes to user-space code that updated
gid_map files

E.g., userns_child_exec.c

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-36 §12.6

https://lwn.net/Articles/621612/


setgroups() and /proc/PID/gid_map

Consider a file with permissions rw----r--
What do these permissions mean?
Process with eUID != file-UID, but with eGID or
supplementary GIDs matching file-GID gets no file access
Sometimes used to deny file access to class of users

A rare use case, but really does occur

setgroups(2) allows a process to drop supplementary GIDs
But that’s okay: CAP_SETGID is required

However, starting in Linux 3.8, unprivileged user could create
user NS where clone() child obtained full capabilities

Including CAP_SETGID!
⇒ setgroups() can now be used to add/remove supp. GIDs

Unprivileged users now had path to call setgroups() and
potentially access files that they should not

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-37 §12.6

setgroups() and /proc/PID/gid_map: the fix

A new (writable) /proc/PID/setgroups file was added; two
values are permitted:

“allow”: processes in user NS of PID may call setgroups()
Process must have CAP_SETGID in user NS in order to call
setgroups()

“deny”: processes in user NS of PID may not call setgroups()
Default value:

Default value in initial user NS is “allow”
New user NS inherits setting from parent user NS

User namespaces and setgroups(), https://lwn.net/Articles/626665/

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-38 §12.6

https://lwn.net/Articles/626665/


setgroups() and /proc/PID/gid_map: the fix

Linux 3.19 added two new restrictions:
Calling setgroups() is not permitted if
/proc/[pid]/gid_map has not yet been set

Calling setgroups() had been possible without a valid map!
“deny” must be written to setgroups file before
unprivileged process can update gid_map

Unprivileged process == process that does not have
CAP_SETGID capability in parent user NS
Setting /proc/PID/setgroups to “deny” is irreversible

Takes us back to traditional situation: there is no pathway
whereby unprivileged processes can call setgroups()

Existence of setgroups file allows backward compatibility
I.e., application can discover if it is running on a kernel that
imposes these restrictions

See code in namespaces/userns_child_exec.c
Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-39 §12.6

Other security issues

Other security issues have been uncovered from time to time
One cause: unprivileged users now have access to system
calls/code paths (and bugs in those paths...) formerly
available only to superuser
Examples:

User namespaces + overlayfs = root privileges,
https://lwn.net/Articles/671641/,
http://www.halfdog.net/Security/2015/
UserNamespaceOverlayfsSetuidWriteExec/

http://seclists.org/fulldisclosure/2016/Feb/123
https://www.openwall.com/lists/oss-security/2022/01/18/7,
https://coder.com/blog/
statement-on-the-recent-cve-2022-0185-vulnerability,
https://access.redhat.com/security/cve/CVE-2022-0185,
https://www.willsroot.io/2022/01/cve-2022-0185.html

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-40 §12.6

https://lwn.net/Articles/671641/
http://www.halfdog.net/Security/2015/UserNamespaceOverlayfsSetuidWriteExec/
http://www.halfdog.net/Security/2015/UserNamespaceOverlayfsSetuidWriteExec/
http://seclists.org/fulldisclosure/2016/Feb/123
https://www.openwall.com/lists/oss-security/2022/01/18/7
https://coder.com/blog/statement-on-the-recent-cve-2022-0185-vulnerability
https://coder.com/blog/statement-on-the-recent-cve-2022-0185-vulnerability
https://access.redhat.com/security/cve/CVE-2022-0185
https://www.willsroot.io/2022/01/cve-2022-0185.html


Other security issues

Because of concerns that further vulnerabilities may be
discovered, some (older) distros:

Disabled user NSs (CONFIG_USER_NS=n)
Patched kernel to disable user NSs by default, and had a
/proc interface that root can use to enable user NSs

E.g., some distro releases (Debian, Ubuntu, Arch) added a
file, /proc/sys/kernel/unprivileged_userns_clone,
If file value was 0, creation of user NS by unprivileged users
was disallowed
Used where admin knows unprivileged users should never need
to run containers

By now, most distro kernels allow unprivileged user NSs by
default

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-41 §12.6

Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44



Combining user namespaces with other namespaces

Creating other (non-user) NSs requires CAP_SYS_ADMIN
Creating user NSs requires no capabilities

And process in new user NS gets full capabilities
⇒ We can create a user NS, and then create other NS types
inside that user NS

I.e., two clone() or unshare() calls
Actually, we can achieve desired result in one call; e.g.:
clone(child_func, stackptr, CLONE_NEWUSER | CLONE_NEWUTS, arg);
// or
unshare(CLONE_NEWUSER | CLONE_NEWUTS);

Kernel creates user NS first, then other NS types
And the other NSs are owned by the user NS

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-43 §12.7

Outline
12 User Namespaces 12-1
12.1 Overview of user namespaces 12-3
12.2 Creating and joining a user namespace 12-9
12.3 User namespaces: UID and GID mappings 12-17
12.4 Exercises 12-30
12.5 Accessing files (and other objects with UIDs/GIDs) 12-33
12.6 Security issues 12-35
12.7 Combining user namespaces with other namespaces 12-42
12.8 Use cases 12-44



Applications of user namespaces

User NSs permit many interesting applications; for example:
Running Linux containers without root privileges

Docker, LXC, Podman
Chrome-style sandboxes without set-UID-root helpers

Chrome browser sandboxes renderer process, since this is a
target of attack
Formerly, use of set-UID-root helpers was required
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

User namespace with single UID identity mapping ⇒ no
superuser possible!

uid_map: 1000 1000 1
(E.g., Firefox and Chrome browsers use this technique)

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-45 §12.8

Applications of user namespaces

chroot()-based applications for process isolation
User NSs allow unprivileged process to create new mount
NSs and use chroot()

fakeroot-type applications without LD_PRELOAD/dynamic
linking tricks

fakeroot(1) is a tool that makes it appear that you are root
for purpose of building packages (so packaged files are
marked owned by root) (https://wiki.debian.org/FakeRoot)

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-46 §12.8

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://wiki.debian.org/FakeRoot


Applications of user namespaces

Firejail: namespaces + seccomp + capabilities + cgroups for
generalized, simplified sandboxing of any application

Predefined sandboxing profiles exist for 1000+ common apps
(Chromium, LibreOffice, VLC, tar, vim, emacs, ...)
https://firejail.wordpress.com/, https://lwn.net/Articles/671534/

Flatpak: namespaces + seccomp + capabilities + cgroups for
application packaging / sandboxing

Allows upstream project to provide packaged app with all
necessary runtime dependencies

No need to rely on packaging in downstream distributions
Package once; run on any distribution

Desktop applications run seamlessly in GUI
http://flatpak.org/, https://lwn.net/Articles/694291/

Ubuntu Snap is a similar concept

Linux Capabilities and Namespaces ©2025 M. Kerrisk User Namespaces 12-47 §12.8

This page intentionally blank

But, here’s a tech talk you might enjoy:

Deconstructing Privilege
Patricia Aas, NDC Oslo 2019

(Not your average tech talk, but targeted at a technical audience and cleverly delivered in
a technical way)

https://www.youtube.com/watch?v=02gpZuK5gF8

https://firejail.wordpress.com/
https://lwn.net/Articles/671534/
http://flatpak.org/
https://lwn.net/Articles/694291/
https://www.youtube.com/watch?v=02gpZuK5gF8

