Linux Capabilities and Namespaces

Capabilities

Michael Kerrisk, man7.org © 2025

August 2025

mtk@man7.org

Outline
3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Capabilities-dumb and capabilities-aware applications 3-28
3.7 Text-form capabilities 3-32

3.8 Exercises 3-35

Outline

3 Capabilities 3-1
3.1 Overview 3-3

Rationale for capabilities

@ Traditional UNIX privilege model divides users into two
groups:
e Normal users, subject to privilege checking based on UID and
GIDs

o Effective UID 0 (superuser) bypasses many of those checks

@ Coarse granularity is a problem:

e E.g., to give a process power to change system time, we
must also give it power to bypass file permission checks

@ = No limit on possible damage if program is compromised

[TLPI §39.1]

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-4 8§31

Rationale for capabilities

@ Capabilities divide power of superuser into small pieces
e 41 capabilities, as at Linux 6.16
e Traditional superuser == process that has full set of
capabilities

@ Goal: replace set-UID-root programs with programs that
have capabilities

e Compromise in set-UID-root binary = very dangerous
e Compromise in binary with file capabilities = less dangerous

@ Capabilities are not specified by POSIX
e A 1990s standardization effort was ultimately abandoned

e Some other implementations have something similar
e E.g., Solaris, FreeBSD

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-5 §31

A selection of Linux capabilities

Capability Permits process to

CAP_CHOWN Make arbitrary changes to file UIDs and GIDs
CAP_DAC_QOVERRIDE Bypass file RWX permission checks
CAP_DAC_READ_SEARCH | Bypass file R and directory X permission checks
CAP_IPC_LOCK Lock memory

CAP_FOWNER chmod(), utime(), set ACLs on arbitrary files
CAP_KILL Send signals to arbitrary processes
CAP_NET_ADMIN Various network-related operations
CAP_SETFCAP Set file capabilities

CAP_SETGID Make arbitrary changes to process’s (own) GIDs
CAP_SETPCAP Make changes to process's (own) capabilities
CAP_SETUID Make arbitrary changes to process’s (own) UIDs
CAP_SYS_ADMIN Perform a wide range of system admin tasks
CAP_SYS _BOOT Reboot the system

CAP_SYS_NICE Change process priority and scheduling policy
CAP_SYS_MODULE Load and unload kernel modules

CAP_SYS RESOURCE Raise process resource limits, override some limits
CAP_SYS_TIME Modify the system clock

More details: capabilities(7) manual page and TLPI §39.2

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-6 §3.1

Supporting capabilities

@ To support implementation of capabilities, the kernel must:
@ Check process capabilities for each privileged operation
e Cf. traditional check: is process's effective UID 07

@ Provide system calls allowing a process to modify its
capabilities
@ So process can raise (add) and lower (remove) capabilities
o (Capabilities analog of set*id() calls)

© Support attaching capabilities to executable files
@ When file is executed, process gains attached capabilities

o (Capabilities analog of set-UID-root program)
@ Implemented as follows:
o Support for first two pieces available since Linux 2.2 (1999)
o Support for file capabilities added in Linux 2.6.24 (2008)

@ (Delay due to design concerns rather than technical reasons)

[TLPI §30.4]
Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-7 8§31
Outline
3 Capabilities 3-1

3.2 Process and file capabilities 3-8

Process and file capabilities

@ Processes and (binary) files can each have capabilities
@ Process capabilities define power of process to do
privileged operations
e Traditional superuser == process that has all capabilities
@ File capabilities are a mechanism to give a process
capabilities when it execs the file

e Stored in security.capability extended attribute
o (File metadata; getfattr -m - <file>)

[TLPI §39.3]

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-9 §32

Process and file capability sets

@ Capability set: bit mask representing a group of capabilities

e Each process' has 3* capability sets:
e Permitted

o Effective

e Inheritable

TIn truth, capabilities are a per-thread attribute
In truth, there are more capability sets

@ An executable file may have 3 associated capability sets:
e Permitted

o Effective
e Inheritable

@ /\ Inheritable capabilities are little used; can mostly ignore

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-10 §3.2

Viewing process capabilities

@ /proc/PID/status fields (hexadecimal bit masks):

$ cat /proc/4091/status

CapInh: 0000000000000000
CapPrm: 0000000000200020
CapEff: 0000000000000000

e See <sys/capability.h> for capability bit numbers
o Here: CAP_KILL (bit 5), CAP_SYS_ADMIN (bit 21)

o getpcaps(1) (part of libcap package):

$ getpcaps 4091
Capabilities for "4091': = cap_kill,cap_sys_admin+p

e More readable notation, but a little tricky to interpret
e Here, single '=" means all sets are empty

@ capsh(1) can be used to decode hex masks:

$ capsh --decode=200020
0x0000000000200020=cap_kill,cap_sys_admin

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities

3-11 §3.2

Modifying process capabilities

@ A process can modify its capability sets by:
o Raising a capability (adding it to set)
e Synonyms: add, enable
o Lowering a capability (removing it from set)
e Synonyms: drop, clear, remove, disable

e Mostly, we'll defer discussion of the APIs until later

@ There are various rules about changes a process can make to

its capability sets

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities

3-12 §3.2

Outline

3 Capabilities 3-1

3.3 Permitted and effective capabilities 3-13

Process permitted and effective capabilities

@ Permitted : capabilities that process may employ
e “Upper bound” on effective capability set

e Once dropped from permitted set, a capability can’'t be
reacquired

o (But see discussion of execve() later)
e Can't drop while capability is also in effective set

@ Effective: capabilities that are currently in effect for process

e l.e., capabilities that are examined when checking if a process
can perform a privileged operation

e Capabilities can be dropped from effective set and reacquired
@ Operate with least privilege....

@ Reacquisition possible only if capability is in permitted set

[TLPI §39.3.3]

org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-14 §3.3

File permitted and effective capabilities

@ Permitted : a set of capabilities that may be added to
process’s permitted set during exec()

@ Effective: /\ a single bit that determines state of process'’s
new effective set after exec():

o If set, all capabilities in process’s new permitted set are also
enabled in effective set

e Useful for so-called capabilities-dumb applications
e If not set, process’'s new effective set is empty

@ File capabilities allow implementation of capabilities analog
of set-UID-root program

o Notable difference: setting effective bit off allows a program
to start in unprivileged state

e Set-UID/set-GID programs always start in privileged state

[TLPI §39.3.4]
Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-15 §3.3
Outline
3 Capabilities 3-1

3.4 Setting and viewing file capabilities 3-16

Setting and viewing file capabilities from the shell

@ setcap(8) sets capabilities on files
o Requires privilege (CAP_SETFCAP — “set file capabilities”)

e E.g., to set CAP_SYS_TIME as a permitted and effective
capability on an executable file:

$ cp /bin/date mydate
$ sudo setcap "cap_sys_time=pe" mydate

@ getcap(8) displays capabilities associated with a file

$ getcap mydate
mydate = cap_sys_time+ep

o filecap(8) searches for files that have capabilities:

$ filecap # Report files in $PATH
$ sudo filecap -a 2> /dev/null # Check all files on system
"2>" to discard "not supported" messages

e filecap is part of the libcap-ng-utils package
[TLPI §39.3.6]

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-17 8§34

cap/demo _file caps.c

int main(int argc, char *argv[]) {
cap_t caps = cap _get proc(); /* Fetch process capabilities */
char *str = cap_to_text(caps, NULL);
printf ("Capabilities: %s\n", str);

if (argec > 1) {
fd = open(argv([1], O _RDONLY);
if (£d >= 0)
printf ("Successfully opened %s\n", argv[1]);
else
printf ("Open failed: %s\n", strerror(errno));

}
exit (EXIT_SUCCESS) ;

@ Display process capabilities

@ Report result of opening file named in argv/[1] (if present)

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-18 §3.4

cap/demo_file caps.c

$ id —u

1000

$ cc -o demo_file_caps demo_file_caps.c -lcap

$./demo_file_caps /etc/shadow

Capabilities: =

Open failed: Permission denied

$ 1s -1 /etc/shadow

—————————— . 1 root root 1974 Mar 15 08:09 /etc/shadow

@ All steps in demos are done from unprivileged user ID 1000

@ Binary has no capabilities = process gains no capabilities

e "“="in the output means “all capability sets empty”

@ open() of /etc/shadow fails
e Because /etc/shadow is readable only by privileged process

e Process needs CAP_DAC_READ_SEARCH capability

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-19 8§34

cap/demo _file caps.c

$ sudo setcap cap_dac_read_search=p demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+p

Open failed: Permission denied

@ Binary confers permitted capability to process, but capability
is not effective

@ Process gains capability in permitted set

@ open() of /etc/shadow fails
o Because CAP_DAC_READ SEARCH is not in effective set

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-20 8§34

cap/demo_file caps.c

$ sudo setcap cap_dac_read_search=pe demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+ep
Successfully opened /etc/shadow

@ Binary confers permitted capability and has effective bit on
@ Process gains capability in permitted and effective sets

@ open() of /etc/shadow succeeds

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-21 8§34
Outline
3 Capabilities 3-1

3.5 Exercises 3-22

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions

@ Zoom has an “Ask for help” button...

o Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-23 §35

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the

font size with Control+4Shift+"+" and Control+"-
@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
o Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4Shift+:

org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-24 8§35

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: :

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-25 8§35

Exercises

o Compile and run the cap/demo_file_caps program, without adding any capabilities
to the file, and verify that when you run the binary, the process has no capabilities:

$ cc -o demo_file_caps demo_file_caps.c -lcap
$./demo_file_caps

@ The string “=" means all capability sets empty.
g Now make the binary set-UID-root:

$ sudo chown root demo_file_caps # Change owner to root
$ sudo chmod u+s demo_file_caps # Turn on set-UID bit
$ 1s -1 demo_file_caps # Verify

-rwsr-xr-x. 1 root mtk 8624 Oct 1 13:19 demo_file_caps

Q Run the binary and verify that the process gains all capabilities. (The string “=ep
means “all capabilities in the permitted + effective sets”.)

@ If the process does not gain all capabilities, check whether the filesystem is
mounted with the nosuid option (findmnt -T <dir>). If it is, either remount
the filesystem without that option or do the exercise on a filesystem that is not
mounted with nosuid (typically, /tmp should work).

0 Take the existing set-UID-root binary, add a permitted capability to it, and set the
effective capability bit:

$ sudo setcap cap_dac_read_search=pe demo_file_caps

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-26 §3.5

Exercises

e When you now run the binary, what capabilities does the process have?

$./demo_file_caps

e Suppose you assign empty capability sets to the binary. When you execute the
binary, what capabilities does the process then have?

$ sudo setcap = demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

0 Use the following command to remove capabilities from the binary and verify that
when executed, the binary once more grants all capabilities to the process:

$ sudo setcap -r demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

© Use the following command to find the binaries on your system that have capabilities
attached:

$ sudo filecap -a 2> /dev/null

Write the name of your distribution, and paste the list of binaries into the Slack
__channel.

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-27 8§35

Outline
3 Capabilities 3-1

3.6 Capabilities-dumb and capabilities-aware applications 3-28

Capabilities-dumb and capabilities-aware applications

e Capabilities-dumb application:
o (Typically) an existing set-UID-root binary whose code we
can't change
@ Thus, binary does not know to use capabilities APlIs
(Binary simply uses traditional set*uid() APIs)
e But want to make legacy binary less dangerous than
set-UlID-root

@ Converse is capabilities-aware application
e Program that was written/modified to use capabilities APls

e Set binary up with file effective capability bit off

e Program “knows” it must use capabilities APIs to enable
effective capabilities

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-29 8§3.6

Adding capabilities to a capabilities-dumb application

To convert existing set-UID-root binary to use file capabilities:

@ Setup:
e Binary remains set-UlID-root
e Enable a subset of file permitted capabilities + set effective

bit on
e l.e., capabilities-dumb == binary with effective bit on

o (Note: code of binary isn't changed)

@ Operation:

o When binary is executed, process gets (just the) specified
subset of capabilities in its permitted and effective sets

o IOW: file-capabilities override effect of set-UID-root bit, which
would normally confer all capabilities to process
e Process UID changes between zero and nonzero
automatically raise/lower process’s capabilities
o (Covered in more detail later)

org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-30 8§3.6

How do | work out what capabilities a program needs?

Some possibilities to discover what capabilities are needed by an
arbitrary program:

@ System call manual pages (section 2) are a good start

e Look for capability requirements documented in
DESCRIPTION or ERRORS

@ Run the program (without capabilities) under strace(1):

e System call failures due to lack of capabilities normally return
EPERM in errno

e /\ But not all EPERM errors are due to lack of capabilities

e If program displays an error message that seems to relate to
capabilities, look in trace output for nearby EPERM errors

@ You may want to use the —v option so that strace doesn't
abbreviate strings

@ In extreme cases, you may need to read kernel source

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-31 8§3.6
Outline
3 Capabilities 3-1

3.7 Text-form capabilities 3-32

Textual representation of capabilities

@ Both setcap(8) and getcap(8) work with textual
representations of capabilities

o Syntax described in cap_from_text(3) manual page

@ String read left to right, containing space-separated clauses
o (The capability sets are initially considered to be empty)
o Clause: caps-list operator flags [operator flags] ...
e caps-list is comma-separated list of capability names, or all
@ operatoris +, -, or =
o flags is zero or more of p (permitted), e (effective), or
i (inheritable)
o Clause can contain multiple [operator flags] parts:

e E.g., "cap_sys_time+p-i" (is same as
"cap_sys_time+p cap_sys_time-i")

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-33 §3.7

Textual representation of capabilities

Operators:

@ + operator: raise capabilities in sets specified by flags

@ - operator: lower capabilities in sets specified by flags

@ = operator:

e Raise capabilities in sets specified by flags;
lower those capabilities in remaining sets

e So, "CAP_KILL=p" is same as "CAP_KILL+p-ie"
e caps-list can be omitted; defaults to all

e flags can be omitted = clear capabilities from all sets
= Thus: "=" means clear all capabilities in all sets

@ What does "=p cap kill,cap_sys_admin+e" mean?
o All capabilities in permitted set, plus CAP_KILL and
CAP_SYS ADMIN in effective set

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-34 8§3.7

Outline

3 Capabilities 3-1

3.8 Exercises 3-35

Exercises

0 What capability bits are enabled by each of the following text-form capability
specifications?

@ "=p"

@ "="

@ '"cap_setuid=p cap_sys_time+pie"
@ "=p cap_kill-p"

@ '"cap_kill=p = cap_sys_admin+pe"

@ '"cap_chown=i cap_kill=pe cap_setfcap,cap_chown=p"

e The program cap/cap_text.c takes a single command-line argument, which is a
text-form capability string. It converts that string to an in-memory representation
and then iterates through the set of all capabilities, printing out the state of each
capability within the permitted, effective, and inheritable sets. It thus provides a
method of verifying your interpretation of text-form capability strings. Try supplying
each of the above strings as an argument to the program (remember to enclose the
entire string in quotes!) and check the results against your answers to the previous
exercise.

.org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-36 §3.8

Exercises

e The pscap command (part of libcap-ng) displays a list of the processes on the
system that have permitted, effective, or inheritable capabilities. In addition to
showing the PPID, PID, UID, command, and capabilities for each of the displayed
processes, output lines may be annotated with one of the following characters:

@ +: the process has a nonempty capability bounding set
@ 0©: the process has a nonempty ambient capability set (later)

@ *: the process is in a child user namespace (later)

Use the pscap command to display the processes that have capabilities on your
system. (By default, PID 1 (init) is excluded from the list; use the —a option to
include PID 1, if you wish.)

org

Linux Capabilities and Namespaces ©2025 M. Kerrisk Capabilities 3-37 §3.8

