Linux/UNIX
System Programming
Essentials

Michael Kerrisk
man7.org

August 2025

© 2025, man7.org Training and Consulting /
Michael Kerrisk (mtk@man7.org). All rights reserved.

These training materials have been made available for personal,
noncommercial use. Except for personal use, no part of these training
materials may be printed, reproduced, or stored in a retrieval system. These
training materials may not be redistributed by any means, electronic,
mechanical, or otherwise, without prior written permission of the author. If
you find these materials hosted on a website other than the author’s own
website (http://man7.org/), then the materials are likely being distributed
in breach of copyright. Please report such redistribution to the author.

These training materials may not be used to provide training to others
without prior written permission of the author.

Every effort has been made to ensure that the material contained herein is
correct, including the development and testing of the example programs.
However, no warranty is expressed or implied, and the author shall not be
liable for loss or damage arising from the use of these programs. The
programs are made available under Free Software licenses; see the header
comments of individual source files for details.

For information about this course, visit
http://man7.org/training/.

For inquiries regarding training courses, please contact us at
training@man?.org.

Please send corrections and suggestions for improvements to this
course material to training@man7.org.

For information about The Linux Programming Interface, please
visit http://man7.org/tlpi/.

+++

http://man7.org/
http://man7.org/training/
http://man7.org/tlpi/

This page intentionally blank

This page intentionally blank

Short table of contents

1 Course Introduction

2 Fundamental Concepts

3 Filel/O

4 Processes

5 Signals

6 Process Lifecycle

7 System Call Tracing with strace

8 Wrapup

1-1

2-1

4-1

5-1

6-1

7-1

8-1

This page intentionally blank

This page intentionally blank

This page intentionally blank

Detailed table of contents

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15
2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15
3 Filel/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 APl summary 3-20
3.4 Exercises 3-22
4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17
5 Signals 5-1
Detailed table of contents
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 APl summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47
6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 APl summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46

Detailed table of contents

6.11 Exercises 6-55
6.12 The exec() library functions 6-58
7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29
8 Wrapup 8-1
8.1 Wrapup 8-3

This page intentionally blank
But, here’s a tech talk you might enjoy:

Deconstructing Privilege
Patricia Aas, NDC Oslo 2019

(Not your average tech talk, but targeted at a technical audience and cleverly delivered in

a technical way)

https://www.youtube.com/watch?v=02gpZuK5gF3

https://www.youtube.com/watch?v=02gpZuK5gF8

Linux System Programming Essentials

Course Introduction

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

1 Course Introduction

1.1 Course overview

1.2 Course materials and resources
1.3 Common abbreviations

1.4 Introductions

1-1
1-3
1-9
1-13
1-15

Outline

1 Course Introduction
1.1 Course overview

1-1
1-3

Course prerequisites

@ Prerequisites

o (Good) reading knowledge of C

e Can log in to Linux / UNIX and use basic commands

@ Knowledge of make(1) is helpful

e (Can do a short tutorial during first practical session for
those new to make)

@ Assumptions

e You are familiar with commonly used parts of standard C
library

.org

@ e.g., stdio and malloc packages

System Programming Essentials

©2025 M. Kerrisk Course Introduction

1-4 §1.1

Course goals

@ Aimed at programmers building/understanding low-level
applications

@ Gain strong understanding of programming API that kernel
presents to user-space

e System calls
e Relevant C library functions
o Other interfaces (e.g., /proc)

e Necessarily, we sometimes delve into inner workings of kernel
e (But... not an internals course)

@ Course topics
e Course flyer

o For more detail, see TOC in course book(s)

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-5 §1.1

Lab sessions

@ Lots of lab sessions...

e Pair/group work is strongly encouraged!
e Usually gets us through practical sessions faster
@ —> SO we can cover more tOpiCS

@ Read each exercise thoroughly before starting
e = exercise descriptions often include important hints

@ Lab sessions are not instructor down time...

e = One-on-one questions about course material or exercises

org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-6 §1.1

Coding exercises

@ For coding exercises, you can use any suitable programming
language in which you are proficient

o C/C+H+ (easiest...)

e Go, D, Rust, & other languages that compile to native
machine code

e Most features can also be exercised from scripting languages
such as Python, Ruby, and Perl

@ Template solutions are provided for most coding exercises
e Filenames: ex.*.c

e Look for “FIXMEs" to see what parts you must complete

e /\ You need to edit corresponding Makefile to add a new
target for the executable

@ Solutions will be mailed out shortly after end of course

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-7 §1.1

Lab sessions: some thoughts on building code

@ Many warnings indicate real problems in the code; fix them

e And the "harmless warnings” create noise that hides the
serious warnings; fix them too
e This is a good thing: cc -Werror
e Treat all warnings as errors
@ https://stackoverflow.com/questions/57842756/
why-should-i-always—-enable-compiler-warnings
@ Rather than writing lots of code before first compile, use a
frequent edit-save-build cycle to catch compiler errors early

e E.g., run the following in a separate window as you edit:

$ while inotifywait -q . ; do echo -e '\n\n'; make; done

e inotifywait is provided in the inotify-tools package

@ (The echo command just injects some white space between
each build)

org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-8 §1.1

https://stackoverflow.com/questions/57842756/why-should-i-always-enable-compiler-warnings
https://stackoverflow.com/questions/57842756/why-should-i-always-enable-compiler-warnings

Outline

1 Course Introduction 1-1

1.2 Course materials and resources 1-9

Course materials

@ Slides / course book
@ Source code tarball
e Location sent by email

e Unpacked source code is a Git repository; you can
commit/revert changes, etc.

@ Kerrisk, M. T. 2010. The Linux Programming Interface
(TLPI), No Starch Press.
e Further info on TLPI: http://man7.org/tlpi/

@ API changes since publication:
http://man7.org/tlpi/api_changes/

(Slides frequently reference TLPI in bottom RHS corner)

.org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-10 §1.2

http://man7.org/tlpi/
http://man7.org/tlpi/api_changes/

Other resources

o POSIX.1-2001 / SUSV3:

http://www.unix.org/version3/

e POSIX.1-2008 / SUSv4:

http://www.unix.org/version4/

e POSIX.1-2024 / SUSV5:
https://pubs.opengroup.org/onlinepubs/9799919799/

@ Manual pages
e Section 2: system calls

e Section 3: library functions
e Section 7: overviews

e Latest version online at
http://man7.org/linux/man-pages/

o Latest tarball downloadable at
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/

org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-11 §1.2

Books

o General:
e Stevens, W.R., and Rago, S.A. 2013. Advanced Programming in the UNIX
Environment (3rd edition). Addison-Wesley.
@ http://www.apuebook.com/

e POSIX threads:
e Butenhof, D.R. 1996. Programming with POSIX Threads. Addison-Wesley.

e TCP/IP and network programming:

e Fall, K.R. and Stevens, W.R. 2013. TCP/IP lllustrated, Volume 1: The Protocols
(2nd Edition). Addison-Wesley.

e Stevens, W.R., Fenner, B., and Rudoff, A.M. 2004. UNIX Network
Programming,Volume 1 (3rd edition): The Sockets Networking API.
Addison-Wesley.

@ http://www.unpbook.com/

e Stevens, W.R. 1999. UNIX Network Programming, Volume 2 (2nd edition):
Interprocess Communications. Prentice Hall.

@ http://www.kohala.com/start/unpv22e/unpv22e.html

@ Operating systems:
e Tanenbaum, A.S., and Woodhull, A.S. 2006. Operating Systems: Design And
Implementation (3rd edition). Prentice Hall.
@ (The Minix book)

o Comer, D. 2015. Operating System Design: The Xinu Approach (2nd edition)

.0OTI¢

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-12 §1.2

http://www.unix.org/version3/
http://www.unix.org/version4/
https://pubs.opengroup.org/onlinepubs/9799919799/
http://man7.org/linux/man-pages/
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/
http://www.apuebook.com/
http://www.unpbook.com/
http://www.kohala.com/start/unpv22e/unpv22e.html

Outline

1 Course Introduction

1.3

Common abbreviations

1-1

1-13

Common abbreviations used in slides

The following abbreviations are sometimes used in the slides:

ACL: access control list

COW: copy-on-write

CV: condition variable

CWD: current working directory
EA: extended attribute

EOF: end of file

FD: file descriptor

FS: filesystem

FTM: feature test macro

GID: group ID
@ rGID, eGID, sGID, fsGID

iff: “if and only if”
IPC: interprocess communication

KSE: kernel scheduling entity

.org

MQ: message queue

MQD: message queue descriptor
NS: namespace

OFD: open file description

PG: process group

PID: process ID

PPID: parent process ID

SHM: shared memory

SID: session ID

SEM: semaphore

SUS: Single UNIX specification

UID: user ID
@ rUID, eUID, sUID, fsUID

System Programming Essentials

©2025 M. Kerrisk

Course Introduction

1-14 §1.3

Outline

1 Course Introduction 1-1

1.4 Introductions 1-15

Introductions: me

@ Programmer, trainer, writer
@ UNIX since 1987, Linux since mid-1990s

@ Active contributor to Linux
e API review, testing, and documentation
@ API design and design review

e Lots of testing, lots of bug reports, a few kernel patches

o Maintainer of Linux man-pages project (2004-2021)
@ Documents kernel-user-space + C library APls

@ Contributor since 2000
@ As maintainer: ~23k commits, 196 releases
@ Author/coauthor of ~440 manual pages

e Kiwi in .de
o (mtk@man7.org, PGP: 4096R/3A35CES5E)

e http://linkedin.com/in/mkerrisk

org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-16 §1.4

http://linkedin.com/in/mkerrisk

Introductions: you

In brief:
@ Who are you?

e If virtual: where are you?

@ Two interesting things about you / things you like to do
when you are not in front of a keyboard

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-17 §1.4

Questions policy

@ General policy: ask questions any time, in one of the
following ways:

e On Slack

e If online, click the “Raise hand” button
@ [|'ll usually see it, and | get to see your name as well

e Or out loud
e But, wait for a quiet point

e And if online, please announce your name, since | might not
be able to see you

@ In the event that questions slow us down too much, | may
say: “batch your questions until next Question penguin slide”

org

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-18 §1.4

This page intentionally blank

This page intentionally blank

Linux System Programming Essentials

Fundamental Concepts

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

2 Fundamental Concepts
2.1 Error handling

2.2 System data types

2.3 Notes on code examples

2-1

2-10
2-15

Outline

2 Fundamental Concepts 2-1
2.1 Error handling 2-3

Error handling

@ Most system calls and library functions return a status
indicating success or failure

@ On failure, most system calls:
e Return -1

e Place integer value in global variable errno to indicate cause
@ Some library functions follow same convention

@ Often, we'll omit return values from slides, where they follow
usual conventions

e Check manual pages for details

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 24 §21

Error handling

@ Return status should always be tested

e /\ Inspect errno only if result status indicates failure
e APIs do not reset errno to 0 on success

o A successful call may modify errno (POSIX allows this)

e E.g., this is wrong:

fd = open(pathname, O_RDONLY);

printf ("open() has returned\n"); // Might modify errno!
if (fd == -1) { // Did open() fail?
perror ("open") ; // Print message based on 'errno'
exit (EXIT_FAILURE) ;
}
System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 25 §21

errno

@ When an API call fails, errno is set to indicate cause

@ Integer value, global variable
e In multithreading environment, each thread has private errno

@ Error numbers in errno are > 0

@ <errno.h> defines symbolic names for error numbers

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */

e errno(1) can be used to search for errors by number or name
e Part of moreutils package (since 2012)

org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-6 §21

Checking for errors

cnt = read(fd, buf, numbytes);

if (cnt == -1) { /* Was there an error? */
if (errno == EINTR)
fprintf (stderr, "read() was interrupted by a signall\n");
else if (errno == EBADF)
fprintf (stderr, "read() given bad file descriptor\n");
else {
/* Some other error occurred */

}

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-7 §21

Displaying error messages

#include <stdio.h>
void perror(const char *msg);

@ Outputs to stderr:
e msg + “: " 4 string corresponding to value in errno

o E.g., if errno contains EBADF, perror("close") would display:
close: Bad file descriptor

@ Simple error handling:

fd = open(pathname, flags, mode);
if (fd == -1) {

perror("open") ;

exit (EXIT_FAILURE);

o (More sophisticated programs might take actions other than
terminating on syscall error)

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-8 §2.1

Displaying error messages

#include <string.h>
char *strerror(int errnum);

@ Returns an error string corresponding to error in errnum
e Same string as printed by perror()

@ Unknown error number? = "Unknown error nnn"
e Or NULL on some systems

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 29 §21
Outline
2 Fundamental Concepts 2-1
2.2 System data types 2-10

System data types

@ Various system info needs to be represented in C
e Process IDs, user IDs, file offsets, etc.
@ Using native C data types (e.g., int, long) in application code
would be nonportable; e.g.:
o sizeof(long) might be 4 on one system, but 8 on another
e One system might use int for PIDs, while another uses long
e Even on same system, things may change across versions
e E.g., in kernel 2.4, Linux switched from 16 to 32-bit UIDs
@ = POSIX defines system data types:
e Implementations must suitably define each system data type

e Defined via typedef; e.g., typedef int pid_t
@ Most types have names suffixed “_t"

e Applications should use these types; e.g., pid_t mypid;
@ = will compile to correct types on any conformant system

[TLPI §3.6.2]

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-11 §2.2

Examples of system data types

Data type POS.IX type Description
requirement

uid_t Integer User ID

gid_t Integer Group ID

pid_t Signed integer Process ID

id t Integer G.eneric !D type; can hold pid_t,
uid_t, gid_t

off _t Signed integer File offset or size

sigset_t Integer or structure | Signal set

size_t Unsigned integer Size of object (in bytes)

ssize_t Signed integer Size of object or error indication

time_t Integer /real-floating | Time in seconds since Epoch

timer_t Arithmetic type POSIX timer ID

(Arithmetic type € integer or floating type)

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-12 §2.2

Printing system data types

@ Need to take care when passing system data types to printf()
@ Example: pid_t can be short, int, or long

@ Suppose we write:

printf("My PID is: %d\n", getpid());

@ Works fine if:
e pid_tis int
o pid_tis short (C promotes short argument to int)

e But what if pid_t is long (and long is bigger than int)?

e = argument exceeds range understood by format specifier
(top bytes will be lost)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-13 §2.2

Printing system data types

@ On virtually all implementations, most integer system data
types are long or smaller

e = Promote to long when printing system data types

printf ("My PID is: %1d\n", (long) getpid());

@ Most notable exception: off_t is typically long long
e Promote to long long for printf()

printf ("Offset is %11ld\n",
(long long) l1lseek(fd, 0, SEEK_CUR));

@ Can also use %zu and %zd for size _t and ssize_t
@ C99 has intmax_t (uintmax_t) with %jd (%ju) specifier
e Solution for all integer types, but not on pre-C99 systems

e Must include <stdint.h> to get these type definitions

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-14 §2.2

Outline

2 Fundamental Concepts 2-1

2.3 Notes on code examples 2-15

Code examples presented in course

@ Code tarball == code from TLPI + further code for course

e Examples on slides edited/excerpted for brevity
e E.g., error-handling code may be omitted

@ Slides always show pathname for full source code
e Full source code always includes error-handling code

@ Code license:
e GNU GPL v3 for programs

e GNU Lesser GPL v3 for libraries
e http://www.gnu.org/licenses/#GPL

@ Understanding Open Source and Free Software Licensing,
A.M. St Laurent, 2004

@ Open Source Licensing: Software Freedom and Intellectual Property Law,
L. Rosen, 2004

@ Open Source Software: Rechtliche Rahmenbedingungen der Freien
Software, Till Jaeger, 2020

@ Droit des logiciels, F. Pellegrini & S. Canevet, 2013

org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-16 §2.3

http://www.gnu.org/licenses/#GPL

Example code 1ib/ subdirectory

@ 1ib/ subdirectory contains code of a few functions
commonly used in examples

@ camelCase function name?

e = It's mine

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-17 §2.3

Common header file

@ Many code examples make use of header file t1pi hdr.h
@ Goal: make code examples a little shorter

@ tlpi_hdr.h:
e Includes a few frequently used header files

e Includes declarations of some error-handling functions

[TLPI §3.5.2]

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-18 §2.3

Error-handling functions used in examples

@ Could handle errors as follows:

fd = open(pathname, flags, mode);
if (fd == -1) {

perror("open") ;

exit (EXIT_FAILURE);

@ Verbose! To make error handling more compact, | define
some simple error-handling functions

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-19 §2.3

Error-handling functions used in examples

#include "tlpi_hdr.h"
errExit(const char *format, ...);

@ Prints error message on stderr that includes:
e Symbolic name for errno value (via some trickery)

strerror() description for current errno value
o Text from the printf()-style message supplied in arguments
e A terminating newline

@ Terminates program with exit status EXIT_FAILURE (1)

@ Example:

if (close(fd) == -1)
errExit("close (fd=Jd)", fd);

might produce:

ERROR [EBADF Bad file descriptor] close (£d=5)

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-20 §2.3

Error-handling functions used in examples

#include "tlpi_hdr.h"
errMsg(const char *format, ...);

o Like errExit(), but does not terminate program

#include "tlpi_hdr.h"
fatal (const char *format, ...);

@ Displays a printf()-style message + newline
@ Terminates program with exit status EXIT_FAILURE (1)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-21 8§23

Building the sample code

@ You can manually compile the example programs, but there is
also a Makefile in each directory

@ = Typing make in source code root directory builds the
programs in most subdirectories

@ If you encounter build errors relating to ACLs, capabilities, or
SELinux, see http://man7.org/tlpi/code/faq.html
e Preferred solution is to install the necessary packages:
@ Debian, Ubuntu: libcap-dev, libacll-dev, libreadline-dev
libcrypt-dev

o RPM-based systems: libcap-devel, libacl-devel, readline-devel
libxcrypt-devel

.org

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-22 §2.3

http://man7.org/tlpi/code/faq.html

Using library functions from the sample code

To use my library functions in your code:
@ Include tlpi hdr.h in your C source file
e Located in 1ib/ subdirectory in source code

@ Link against my library, 1ibtlpi.a, located in source
code root directory

e To build library, run make in the source code root directory or
in 1ib/ subdirectory

@ Method 1: Place your program in one of “my" directories,
add target to corresponding Makefile, and build using make

@ Method 2: Manually compile with the following command:

cc -Isrc-root/lib yourprog.c src-root/libtlpi.a

e src-root must be replaced with the absolute or relative path
of source code root directory

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-23 §2.3

https://www.youtube.com/watch?v=dxOYSGouY-0

Linux System Programming Essentials

File 1/0

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline
3 Filel/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 APl summary 3-20

3.4 Exercises

3-22

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
Files
@ “On UNIX, everything is a file"
e More correctly: “everything is a file descriptor”
@ Note: the term file can be ambiguous:
e A generic term, covering disk files, directories, sockets,
FIFOs, terminals and other devices and so on
e Or specifically, a disk file in a filesystem
e To clearly distinguish the latter, the term regular file is
sometimes used
System Programming Essentials ©2025 M. Kerrisk File 1/O 3-4 8§31

System calls versus stdio

e C programs usually use stdio package for file /O

@ Library functions layered on top of 1/O system calls

System calls

Library functions

file descriptor (int)
open(), close()
Iseek()

read()

write()

file stream (FILE ¥)
fopen(), fclose()

fseek(), ftell()

fgets(), fscanf(), fread() ...
fputs(), fprintf(), fwrite(), ...

feof(), ferror()

@ We presume understanding of stdio; = focus on system calls

System Programming Essentials ©2025 M. Kerrisk

File 1/0

3-5 §3.1

File descriptors

@ All 1/0 is done using file descriptors (FDs)

@ nonnegative integer that identifies an open file

@ Used for all types of files

e terminals, regular files, pipes, FIFOs, devices, sockets, ...

@ 3 FDs are normally available to programs run from shell:
o (POSIX names are defined in <unistd.h>)

FD Purpose

POSIX name

stdio stream

Standard input
Standard output
Standard error

N = O

STDIN_FILENO
STDOUT _FILENO
STDERR_FILENQO

stdin
stdout
stderr

.org

System Programming Essentials ©2025 M. Kerrisk

File 1/0

36 §3.1

Key file 1/O system calls

Four fundamental calls:
@ open(): open a file, optionally creating it if needed
e Returns file descriptor used by remaining calls

@ read(): input
e write(): output

@ close(): close file descriptor

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-7 8§31
Outline
3 File 1/0 3-1

3.2 open(), read(), write(), and close() 3-8

open(): opening a file

#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags, ... /* mode_t mode */);

@ Opens existing file / creates and opens new file

@ Arguments:
e pathname identifies file to open

e flags controls semantics of call
@ e.g., open an existing file vs create a new file

e mode specifies permissions when creating new file

@ Returns: a file descriptor (nonnegative integer)
o (Guaranteed to be lowest available FD)

[TLPI §4.3]

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-9 §32

open() flags argument

flags is formed by ORing (|) together:
@ Access mode
e Specify exactly one of 0_RDONLY, O_WRONLY, or O_RDWR

@ File creation flags (bit flags)
o File status flags (bit flags)

[TLPI §4.3.1]

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-10 §3.2

File creation flags

@ File creation flags:
o Affect behavior of open() call
e Can't be retrieved or changed

@ Examples:
o 0O _CREAT: create file if it doesn’t exist
@ mode argument must be specified

e Without O_CREAT, can open only an existing file (else:

ENOENT)

e 0_EXCL: create “exclusively”
e Give an error (EEXIST) if file already exists

@ Only meaningful with 0_CREAT

e O_TRUNC: truncate existing file to zero length
e l.e., discard existing file content

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-11 §3.2
File status flags
e File status flags:
o Affect semantics of subsequent file /O
o Can be retrieved and modified using fentl()
@ Examples:
e O_APPEND: always append writes to end of file
o 0_NONBLOCK: nonblocking 1/0
System Progra%m%lng Essentials ©2025 M. Kerrisk File 1/O 3-12 §3.2

open() examples

@ Open existing file for reading:

fd = open("script.txt", O_RDONLY);

@ Open file for read-write, create if necessary, ensure we are
creator:

fd = open("myfile.txt", O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR); /* rw-—-————- */

@ Open file for writing, creating if necessary:

fd = open("myfile.txt", O_CREAT | O_WRONLY, S_IRUSR);

e File opened for writing, but created with only read
permission!

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-13 §3.2

read(): reading from a file

#include <unistd.h>
ssize_t read(int fd, void *buffer, size_t count);

@ fd: file descriptor
@ buffer: pointer to buffer to store data

@ count: number of bytes to read
o (buffer must be at least this big)

o (ssize_t and size_t are signed and unsigned integer types)

@ Returns:
e > 0: number of bytes read
e May be < count (e.g., terminal read() gets only one line)

e 0: end of file
e —1: error

e /\ No terminating null byte is placed at end of buffer

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-14 8§32

write(): writing to a file

#include <unistd.h>
ssize_t write(int fd, const void *buffer, size_t count);

e fd: file descriptor
@ buffer: pointer to data to be written

@ count: number of bytes to write

@ Returns:
e Number of bytes written

e May be < count (a “partial write")
(e.g., write fills device, or insufficient space to write entire
buffer to nonblocking socket)

e —1 on error

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-15 §3.2

close(): closing a file

#include <unistd.h>
int close(int fd);

@ fd: file descriptor

@ Returns:

e 0: success
e —1: error

@ Really should check for error!
e Accidentally closing same FD twice
o l.e., detect program logic error

o Filesystem-specific errors
e E.g., NFS commit failures may be reported only at close()

e Note: close() always releases FD, even on failure return
o See close(2) manual page

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-16 §3.2

Example: copy.c

$./copy old-file new-file

@ A simple version of ¢cp(1)

.org

System Programming Essentials ©2025 M. Kerrisk File |/O

3-17 §3.2

Example: fileio/copy.c

Always remember to handle errors!

#define BUF_SIZE 1024
char buf [BUF_SIZE];

int infd = open(argv([1], O_RDONLY);
if (infd == -1) errExit("open %s", argv[1]);

int flags = O_CREAT | O_WRONLY | O_TRUNC;

mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP; /* ru-r-—--—- */
int outfd = open(argv([2], flags, mode);

10| if (outfd == -1) errExit("open %s", argv[2]);

OCoO~NOOIPWND -

12| ssize_t nread;

13| while ((nread = read(infd, buf, BUF_SIZE)) > 0)

14 if (write(outfd, buf, nread) !'= nread)

15 fatal("write() returned error or partial write occurred");
16| if (nread == -1) errExit("read");

18| if (close(infd) == -1) errExit("close");
19| if (close(outfd) == -1) errExit("close");

.org

System Programming Essentials ©2025 M. Kerrisk File |/O

3-18 §3.2

Universality of |/O

@ The fundamental 1/O system calls work on almost all file

types:

$ 1s > mylist
$./copy mylist new

$./copy mylist /dev/tty

$ mkfifo f
$ cat £ &
$./copy mylist £

Regular file
Device

FIFO
(reads from FIFO)
(writes to FIF0)

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-19 §3.2
Outline
3 File 1/0 3-1
3.3 APl summary 3-20

APl summary

int open(const char *pathname, int flags, ... /* mode_t mode */);
// Returns a file descriptor

ssize_t read(int fd, void *buffer, size_t count);
// Returns: # of bytes actually read or O for EOF

ssize_t write(int fd, const void *buffer, size_t count);
// Returns: # of bytes actually written

int close(int fd);

.org

System Programming Essentials ©2025 M. Kerrisk File /O 3-21 8§33

Outline

3 File /O 3-1

3.4 Exercises 3-22

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions

@ Zoom has an “Ask for help” button...

o Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-23 8§34

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the

font size with Control+4Shift+"+" and Control+"-
@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
o Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4Shift+:

org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-24 8§34

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: ...

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-25 8§34

Exercise notes

@ For many exercises, there are templates for the solutions

o Filenames: ex.*.c

e Look for FIXMEs to see what pieces of code you must add

o /\ You will need to edit the corresponding Makefile to add
a new target for the executable

@ Look for the EXERCISE_FILES_EXE macro

-EXERCISE_FILES_EXE
+EXERCISE_FILES_EXE

ex.prog_a ex.prob_b
ex.prog_a # ex.prog_b

@ Get a make tutorial now if you need one

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-26 §3.4

Exercise

©Q Using open(), close(), read(), and write(), implement the command
tee [-a] file ([template: fileio/ex.tee.c]). This command
writes a copy of its standard input to standard output and to file. If
file does not exist, it should be created. If file already exists, it
should be truncated to zero length (0_TRUNC). The program should
support the —a option, which appends (0_APPEND) output to the file if
it already exists, rather than truncating the file.

Some hints:
@ You can build ../1ibtlpi.a by doing make in source code root directory.
@ Standard input & output are automatically opened for a process.
@ Remember that you will need to add a target in the Makefile!
(*]

After first doing some simple command-line testing, test using the unit test in
the Makefile: make tee_test.

@ Why does “man open” show the wrong manual page? It finds a page in the
wrong section first. Try “man 2 open” instead.

@ while inotifywait -q . ; do echo -e '\n\n'; make; done
@ You may need to install the inotify-tools package

@ Command-line options can be parsed using getopt(3).

.org

System Programming Essentials ©2025 M. Kerrisk File 1/O 3-27 8§34

Linux System Programming Essentials

Processes

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

4 Processes

4.1 Process IDs

4.2 Process memory layout
4.3 Command-line arguments
4.4 The environment list

4.5 The /proc filesystem

4-1
43
4-6
4-9

4-12

4-17

Outline

4 Processes 4-1
4.1 Process IDs 4-3
Process ID

#include <unistd.h>
pid_t getpid(void);

@ Process == running instance of a program

o Program + program loader (kernel) = process

@ Every process has a process ID (PID)

.org

e pid_t: positive integer that uniquely identifies process
o getpid() returns callers's PID

e Kernel allocates PIDs using “elevator” algorithm

@ When elevator reaches top of range, it then cycles, reusing
PIDs starting at low end of range

e Maximum PID is 32767 on Linux
e All PID slots used? = fork() fails with EAGAIN

e Limit adjustable via /proc/sys/kernel/pid_max (up to
kernel's PID_MAX_LIMIT constant, typically 4*1024*1024)

[TLPI §6.2]

System Programming Essentials ©2025 M. Kerrisk Processes 4-4 §4,1

Parent process 1D

#include <unistd.h>
pid_t getppid(void);

@ Every process has a parent
o Typically, process that created this process using fork()

e Parent process is informed when its child terminates

@ All processes on system thus form a tree

e At root is init, PID 1, the ancestor of all processes
e “Orphaned” processes are “adopted” by init

o getppid() returns PID of caller's parent process (PPID)

[TLPI §6.2]
System Programming Essentials ©2025 M. Kerrisk Processes 4-5 §4.1
Outline
4 Processes 4-1

4.2 Process memory layout 4-6

Process memory layout

Virtual memory of a process is divided into segments:
@ Text: machine-language instructions
e Marked read-only to prevent self-modification

e Multiple processes can share same code in memory

o Initialized data: global and static variables that are
explicitly initialized
e Values read from program file when process is created
@ Uninitialized data: global and static variables that are not
explicitly initialized
e Initialized to zero when process is created
@ Stack: storage for function local variables and call linkage
info (saved SP and PC registers)
@ Heap: an area from which memory can be dynamically

allocated and deallocated
o malloc() and free()

System Programming Essentials ©2025 M. Kerrisk Processes 4-7 §4.2

Process memory layout (simplified)

argv, environ High virtual

address
Stack
(grows downward)

Memory

(unallocated memory) ~—— mappings
placed here

Heap
(grows upward)

Uninitialized data (bss)

Initialized data

Text (program code) Low virtual

address

[TLPI §6.3]

org

System Programming Essentials ©2025 M. Kerrisk Processes 4-8 §4.2

Outline

4 Processes 4-1

4.3 Command-line arguments 4-9

Command-line arguments

@ Command-line arguments of a program provided as first two
arguments of main()

e Conventionally named argc and argv
@ int argc: number of arguments

@ char *argv[]: array of pointers to arguments (strings)
o argv[0] == name used to invoke program

o argvfargc] == NULL

@ E.g., for the command, necho hello world:

argc 3

argu —_—T> 0 ——>|n|e|c|h|o|\0|
1 ——>|nh|e|1]1]0][\0]
| ——[wle 1[4 w]

3 NULL

[TLPI §6.6]

.org

System Programming Essentials ©2025 M. Kerrisk Processes 4-10 §4.3

procexec/show_argv.c

@ Display command-line arguments of program

int main(int argc, char *argv[]) {
printf ("Program invoked with:\n");

printf ("Remaining arguments:\n");
for (int j = 1; ; j++) {

if (argv[j] == NULL)
break;

}
exit (EXIT_SUCCESS) ;

printf (" argv[0] == %s\n\n", argv[0]);

printf (" argv[%d] = %s\n", j, argv[jl)

@ Example run:

$./show_argv a b c
Program invoked with:
argv[0] == ./show_argv

Remaining arguments:

argv[1] = a
argv[2] =D
argv[3] = c
argv([4] = (null)
.org
System Programming Essentials ©2025 M. Kerrisk Processes 4-11 8§43
Outline
4 Processes 4-1

4.4 The environment list

4-12

Environment list (environ)

Each process has a list of environment variables
@ Strings of form name=value

@ New process inherits copy of parent’s environment

o Simple (one-way) interprocess communication
@ Commonly used to control behavior of programs

@ Examples:
o HOME: user's home directory (initialized at login)

e PATH: list of directories to search for executable programs

e EDITOR: user's preferred editor

[TLPI §6.7]
System Programming Essentials ©2025 M. Kerrisk Processes 4-13 §4.4
Environment list (environ)
@ Can create environment variables within shell:
$ MANWIDTH=72 # Create shell var.
$ export MANWIDTH # Turn shell var. into environment var.
$ man getpid

e Or: export MANWIDTH=72
@ All processes created by shell will inherit definition

@ Creating an environment variable for a single command (does
not modify shell's environment):

$ MANWIDTH=72 man getpid

@ To list all environment variables, use env(1) or printenv(1)

org

System Programming Essentials ©2025 M. Kerrisk Processes 4-14 §4.4

Accessing the environment from a program

@ Environment list can be accessed via a global variable:

extern char **environ;

@ NULL-terminated array of pointers to strings:

environ

— ———»| LOGNAME=mtk\0

——| SHELL=/bin/bash\0 |

—— | HOME=/home/mtk\o |

——>| PATH=/usxr/local/bin:/usxr/bin:/bin:.\0

—J1—» | TERM=xterm\0

NULL

@ Displaying environment:

for (char **ep = environ; *ep != NULL; ep++)
puts (xep) ;
.org
System Programming Essentials ©2025 M. Kerrisk Processes 4-15 8§44

Environment variable APls

@ Fetching value of an EV: value = getenv("NAME") ;

@ Creating/modifying an EV:
e putenv("NAME=value");

o setenv("NAME", "value", overwrite);

@ Removing an EV: unsetenv ("NAME") ;

@ /proc/PID/environ can be used (with suitable permissions)

to view environment of another process

@ See manual pages and TLPI §6.7

.org

System Programming Essentials ©2025 M. Kerrisk Processes

4-16 §4.4

Outline

4 Processes 4-1

4.5 The /proc filesystem 4-17

The /proc filesystem

@ Pseudofilesystem that exposes kernel information via
filesystem metaphor

e Structured as a set of subdirectories and files
e proc(5) manual page
@ Files don't really exist

e Created on-the-fly when pathnames under /proc are
accessed

@ Many files read-only

@ Some files are writable = can update kernel settings

@ Named “/proc” because earliest implementations (pre-Linux, 1980s) exposed info
only about processes

@ https://en.wikipedia.org/wiki/Procfs

.org

System Programming Essentials ©2025 M. Kerrisk Processes 4-18 8§45

https://en.wikipedia.org/wiki/Procfs

The /proc filesystem: examples

@ /proc/cmdline: command line used to start kernel

@ /proc/cpuinfo: info about CPUs on the system

@ /proc/meminfo: info about memory and memory usage
@ /proc/modules: info about loaded kernel modules

@ /proc/sys/fs/: files and subdirectories with
filesystem-related info

@ /proc/sys/kernel/: files and subdirectories with various
readable/settable kernel parameters

@ /proc/sys/net/: files and subdirectories with various
readable/settable networking parameters

System Programming Essentials ©2025 M. Kerrisk Processes 4-19 8§45

/proc/PID/ directories

@ One /proc/PID/ subdirectory for each running process

@ Subdirectories and files exposing info about process with
corresponding PID

@ Some files publicly readable, some readable only by process
owner; a few files writable

@ Examples
e cmdline: command line used to start program

e cwd: current working directory

e environ: environment of process

e fd: directory with info about open file descriptors
e limits: resource limits

e maps: mappings in virtual address space

o status: (lots of) info about process

.org

System Programming Essentials ©2025 M. Kerrisk Processes 4-20 8§45

Linux System Programming Essentials

Signals

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline
5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 APl summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Outline

5 Signals 5-1
5.1 Overview of signals 5-3

Signals are a notification mechanism

@ Signal == notification to a process that an event occurred
e “Software interrupts”

e asynchronous: receiver (generally) can't predict when a
signal will occur

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-4 §5.1

Signal types

@ 64 signals (on Linux)
@ Each signal has a unique integer value
o Numbered starting at 1 /\
@ Defined symbolically in <signal.h>:
e Names of form SIGxxx
e e.g., signal 2 is SIGINT (“terminal interrupt”)

@ Two broad categories of signals:
e “Standard” signals (1 to 31)
@ Mostly for kernel-defined purposes

o Realtime signals (32 to 64)
e Exist for user-defined purposes

[TLPI §20.1]

System Programming Essentials ©2025 M. Kerrisk Signals 5-5 §5.1

Signal generation

@ Signals can be sent to a process by:
o The kernel (the common case)

o Another process (with suitable permissions)
e kill(pid, sig) and related APIs

@ Kernel generates signals for various events, e.g.:
e Attempt to access a nonexistent memory address (SIGSEGV)

o Terminal interrupt character (Control-C) was typed (SIGINT)
o Child process terminated (SIGCHLD)
o Process CPU time limit exceeded (SIGXCPU)

[TLPI §20.1]

System Programming Essentials ©2025 M. Kerrisk Signals 5-6 §5.1

Terminology

Some terminology:
@ A signal is generated when an event occurs

@ Later, a signal is delivered to the process, which then takes
some action in response

@ Between generation and delivery, a signal is pending

@ We can block (delay) delivery of specific signals by adding
them to process’s signal mask

e Signal mask == set of signals whose delivery is blocked

e Pending signal is delivered only after it is unblocked

[TLPI §20.1]
System Programming Essentials ©2025 M. Kerrisk Signals 5-7 §5.1
Outline
5 Signals 5-1

5.2 Signal dispositions 5-8

Signal default actions

@ When a signal is delivered, a process takes one of these

default actions:
e lgnore: signal is discarded by kernel, has no effect on process

o Terminate: process is terminated (“killed")

e Core dump + terminate: process produces a core dump
and is terminated

@ Core dump file can be used to examine state of program

inside a debugger

@ See also core(5) manual page

e Stop: execution of process is suspended

e Continue: execution of a stopped process is resumed

@ Default action for each signal is signal-specific

.org

[TLPI §20.2]

System Programming Essentials

©2025 M. Kerrisk

Signals

59 §5.2

Standard signals and their default actions

Name Description Default
SIGABRT Abort process Core
SIGALRM Real-time timer expiration Term
SIGBUS Memory access error Core
SIGCHLD Child stopped or terminated Ignore
SIGCONT Continue if stopped Cont
SIGFPE Arithmetic exception Core
SIGHUP Hangup Term
SIGILL Illegal instruction Core
SIGINT Interrupt from keyboard Term
SIGIO 1/O possible Term
SIGKILL Sure kill Term
SIGPIPE Broken pipe Term
SIGPROF | Profiling timer expired Term o Signal default actions are:
SIGPWR Power about to fail Term) .
STGQUIT Terminal quit Core o Term: terminate the process
SIGSEGV Invalid memory reference Core o Core: produce core dump and
SIGSTKFLT | Stack fault on coprocessor Term terminate the process
SIGSTOP Sure stop Stop
SIGSYS Invalid system call Core o Ignore: ignore the signal
SIGTERM Terminate process Term « Stop: stop (suspend) the process
SIGTRAP Trace/breakpoint trap Core
SIGTSTP Terminal stop Stop o Cont: resume process (if stopped)
SIGTTIN Terminal input from background | Stop o SIGKILL and SIGSTOP can't be caught
SIGTTOU Terminal output from background | Stop . '
SIGURG Urgent data on socket Ignore blocked, or ignored
SIGUSR1 User-defined signal 1 Term o TLPI §20,2
SIGUSR2 User-defined signal 2 Term
SIGVTALRM | Virtual timer expired Term
SIGWINCH | Terminal window size changed Ignore
SIGXCPU CPU time limit exceeded Core
SIGXFSZ File size limit exceeded Core
.org
System Programming Essentials ©2025 M. Kerrisk Signals 5-10 §5.2

Stop and continue signals

@ Certain signals stop a process, freezing its execution

@ Examples:

e SIGTSTP: “terminal stop” signal, generated by typing
Control-Z

e SIGSTOP: “sure stop” signal

@ SIGCONT causes a stopped process to resume execution
e SIGCONT is ignored if process is not stopped

@ Most common use of these signals is in shell job control

System Programming Essentials ©2025 M. Kerrisk Signals 5-11 §5.2

Changing a signal’s disposition

@ Instead of default, we can change a signal’s disposition to:
e Ignore the signal
o Handle (“catch”) the signal: execute a user-defined
function upon delivery of the signal
e Revert to the default action
e Useful if we earlier changed disposition
@ Can't change disposition to terminate or core dump +
terminate
e But, a signal handler can emulate these behaviors

@ Can't change disposition of SIGKILL or SIGSTOP (error:
EINVAL)

e So, they always kill or stop a process

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-12 §5.2

Changing a signal's disposition: sigaction()

#include <signal.h>
int sigaction(int sig, const struct sigaction *act,
struct sigaction *oldact);

sigaction() changes (and/or retrieves) disposition of signal sig
@ sigaction structure describes a signal’s disposition

@ act points to structure specifying new disposition for sig

@ oldact returns previous disposition for sig
e Can be NULL if we don't care

@ sigaction(sig, NULL, &oldact) returns current
disposition, without changing it

[TLPI §20.13]

System Programming Essentials ©2025 M. Kerrisk Signals 5-13 §5.2

sigaction structure

struct sigaction {
void (*sa_handler) (int) ;
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer) (void) ;

};

@ sa_handler specifies disposition of signal:
e Address of a signal handler function

e SIG_IGN: ignore signal

e SIG_DFL: revert to default disposition
@ sa_mask: signals to block while handler is executing

o Field is initialized using macros described in sigsetops(3)
@ sa_flags: bit mask of flags affecting invocation of handler

@ sa_restorer: not for application use

e Used internally to implement “signal trampoline”

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-14 §5.2

lgnoring a signal (signals/ignore_signal.c)

{

int ignoreSignal(int sig)

struct sigaction sa;

sa.sa_handler = SIG_IGN;
sa.sa_flags = 0;

sigemptyset (&sa.sa_mask) ;

return sigaction(sig, &sa, NULL);

@ A “library function” that ignores specified signal

@ sa_mask field is significant only when establishing a signal

handler, but for best practice we initialize to sensible value

System Programming Essentials ©2025 M. Kerrisk Signals 5-15 §5.2
Outline
5 Signals 5-1
5.3 Useful signal-related functions 5-16

Displaying signal descriptions

#define _GNU_SOURCE
#include <string.h>
char *strsignal(int sig);

@ Returns string describing signal sig

@ NSIG constant is 1 greater than maximum signal number
e Define _GNU_SOURCE to get definition from <signal.h>

.org

[TLPI §20.8]

System Programming Essentials ©2025 M. Kerrisk Signals

5-17 §5.3

Example: signals/t_strsignal.c

int main(int argc, char *argv[]) {
for (int sig = 1; sig < NSIG; sig++)
printf("%2d: %s\n", sig, strsignal(sig));

exit (EXIT_SUCCESS) ;

$./t_strsignal

: Hangup
: Interrupt
: Quit
: I1llegal instruction
: Trace/breakpoint trap
: Aborted
: Bus error
: Floating point exception
: Killed
10: User defined signal 1
11: Segmentation fault
12: User defined signal 2
13: Broken pipe

OCoO~NOOIPdWN -

.org

System Programming Essentials ©2025 M. Kerrisk Signals

5-18 §5.3

Waiting for a signal: pause()

#include <unistd.h>
int pause(void);

@ Blocks execution of caller until a signal is caught

@ Always returns —1 with errno set to EINTR

o (Standard return for blocking system call that is interrupted
by a signal handler)

@ (See also sigsuspend(2))

[TLPI §20.14]

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-19 §5.3

Other APIs to learn about

@ sigprocmask(2): explicitly modify process signal mask to
control which signals are blocked

@ sigpending(2): discover which signals are pending for calling
process

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-20 §5.3

Outline
5 Signals 5-1

5.4 Signal handlers 5-21

Signal handlers

@ Programmer-defined function

@ Called with one integer argument: number of signal
e = handler installed for multiple signals can differentiate...

@ Returns void

void
myHandler (int sig)
{

/* Actions to be performed when signal is delivered */

}

[TLPI §20.4]

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-22 §5.4

Signal handler invocation

@ Automatically invoked by kernel when signal is delivered:

e Can interrupt main program flow at any time

e On return, execution continues at point of interruption

Main program

start of program

]
3
' § Kernel calls signal .
i = | handler on behalf Signal handler
Delivery + § ofprocess . —"E
of signal AR) Nt H
HIO= 10)
@ instru(ition m :‘ """"""" ‘ Code of

instruction m+1 N _
is executed

7
1
1
]
1
1
]
1
1
!
1
R

signal handler

|
|
; Program e
i resumes at syt return
E point of interruption

exit() g

System Programming Essentials ©2025 M. Kerrisk Signals 5-23 §5.4
Example: signals/ouch_sigaction.c
Print “Ouch!” when Control-C is typed at keyboard

1| static void sigHandler(int sig) {

2 printf ("Ouch!\n"); /* UNSAFE x*/

3|}

4

5|/ int main(int argc, char *argv[]) {

6 struct sigaction sa;

7 sa.sa_flags = 0; /* No flags */

8 sa.sa _handler = sigHandler; /* Handler function */

9 sigemptyset (&sa.sa_mask) ; /* Don't block additional signals
10 during invocation of handler */
11 if (sigaction(SIGINT, &sa, NULL) == -1)

12 errExit("sigaction");

13

14 for (;3)

15 pause () ; /* Wait for a signal */
16|}

.org

System Programming Essentials ©2025 M. Kerrisk Signals

5-24 §5.4

Outline

5 Signals 5-1

5.5 Exercises 5-25

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...

e Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

org

System Programming Essentials ©2025 M. Kerrisk Signals 5-26 §5.5

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+"“+" and Control+"“-"

e Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
@ Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4+Shift+:

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-27 §5.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: .

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

e Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-28 §5.5

Exercise

@ While a signal handler is executing, the signal that caused it
to be invoked is (by default) temporarily added to the signal
mask, so that it is blocked from further delivery until the
signal handler returns. Consequently, execution of a signal
handler can’t be interrupted by a further execution of the
same handler. To demonstrate that this is so, modify the
signal handler in the signals/ouch_sigaction.c program
to include the following after the existing printf() statement:

sleep(5);
printf ("Bye\n") ;

Build and run the program, type control-C once, and then,
while the signal handler is executing, type control-C three
more times. What happens? In total, how many times is the
signal handler called?

System Programming Essentials ©2025 M. Kerrisk Signals 5-29 §5.5
Outline
5 Signals 5-1

5.6 Signal sets, the signal mask, and pending signals 5-30

Signal sets

@ Various signal-related APIs work with signal sets

@ Signal set == data structure that represents multiple signals

@ Data type: sigset_t
e Typically a bit mask, but not necessarily

[TLPI §20.9]

System Programming Essentials ©2025 M. Kerrisk Signals 5-31 §5.6

Manipulating signal sets

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);

int sigdelset(sigset_t *set, int sig);

int sigismember(const sigset_t *set, int sig);

@ sigemptyset() initializes set to contain no signals

o sigfillset() initializes set to contain all signals

o We must initialize set using sigemptyset() or sigfillset()
before employing macros below

o Using memset() to zero a signal set is not correct
@ sigaddset() adds sig to set
@ sigdelset() removes sig from set

@ sigismember() returns 1 if sigis in set, 0 if it is not, or =1 on
error (e.g., sig is invalid)

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-32 §5.6

Blocking signals (the signal mask)

@ Each process has a signal mask—a set of signals whose
delivery is currently blocked

o (In truth: each thread has a signal mask...)

@ If a blocked signal is generated, it remains pending until
removed from signal mask

@ The signal mask can be changed in various ways:

e While handler is invoked, the signal that triggered the
handler is (temporarily) added to signal mask

e While handler is invoked, any signals specified in sa__mask
are (temporarily) added to signal mask

o Explicitly, using sigprocmask()
@ Attempts to block SIGKILL/SIGSTOP are silently ignored

[TLPI §20.10]

System Programming Essentials ©2025 M. Kerrisk Signals 5-33 §5.6

sigprocmask()

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

@ Adds signals to, or removes signals from, caller’s signal mask

o (Typical use: prevent interruption by signal handler while
updating a shared data structure)

@ how specifies change to signal mask:
e SIG_BLOCK: add signals in set to signal mask
@ l.e., union with existing signal mask
e SIG_UNBLOCK: remove signals in set from signal mask

e SIG_SETMASK: assign set to signal mask
e l.e., overwrite existing signal mask

[TLPI §20.10]

System Programming Essentials ©2025 M. Kerrisk Signals 5-34 §5.6

sigprocmask()

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

@ oldset returns previous signal mask
e Can be NULL if we don't care
@ sigprocmask(how, NULL, &oldset) retrieves current
mask without changing it
e how is ignored

[TLPI §20.10]

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-35 §5.6

Example: temporarily blocking a signal

@ The following code snippet shows how to temporarily block a
signal (SIGINT) while executing a block of code

sigset_t blocking, prev;

sigemptyset (&blocking) ;

sigaddset (&blocking, SIGINT);

sigprocmask (SIG_BLOCK, &blocking, &prev);

/* ... Code to execute with SIGINT blocked ... */

sigprocmask (SIG_SETMASK, &prev, NULL);

e We might do this because main program wants to operate on
global variables that signal handle would also access

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-36 §5.6

Pending signals

#include <signal.h>
int sigpending(sigset_t *set);

@ Between generation and delivery, a signal is pending

e Pending state is normally unobservable unless signal is
explicitly blocked

@ sigpending() returns (in set) the set of signals currently
pending for caller

o We do not need to initialize set before calling sigpending()

e Can examine set using sigismember():

sigset_t pending;
sigpending(&pending) ;
if (sigismember (&pending, SIGINT))
printf ("SIGINT (%s) is pending\n", strsignal (SIGINT));

[TLPI §20.11]

System Programming Essentials ©2025 M. Kerrisk Signals 5-37 §5.6

Signals are not queued

@ The set of pending (standard) signals is a mask

@ = If same signal is generated multiple times while blocked, it
will be delivered just once

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-38 §5.6

Outline

5 Signals 5-1

5.7 APl summary 5-39

APl summary

int sigaction(int sig, const struct sigaction *act, struct sigaction *oldact);
// Change disposition of 'sig' to 'act'; returning previous
// disposition in 'oldact'

struct sigaction {

void (*sa_handler) (int) ; // Handler address or DIG_IGN or SIG_DFL
sigset_t sa_mask; // Signals to be blocked while handler runs
int sa_flags;

};

char *strsignal(int sig); // Return string describing a signal

int pause(void); // Pause until interrupted by signal handler

// Following are for manipulating signal sets (sigset_t):
int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);

int sigdelset(sigset_t *set, int sig);

int sigismember(const sigset_t *set, int sig);

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
// Modify the signal mask and return previous mask;
// 'how' can be SIG_BLOCK / SIG_UNBLOCK / SIG_SETMASK

int sigpending(sigset_t *set);
// Return set of pending signals in 'set'

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-40 §5.7

Outline

5 Signals 5-1
5.8 Exercises 5-41
Exercises

The goal of these exercises is to experiment with signal handlers and the use
of the signal mask to block delivery of signals. A template for both part 1
and part 2 of the exercise is provided ([template:
signals/ex.pending_sig_expt.c|)

Hint: don't confuse the signal mask with the sa_mask field that is
passed to sigaction(). The signal mask is a process attribute maintained
inside the kernel that can be directly modified using calls to sigaction(). The
sa__mask field specifies additional signals that should be temporarily added
to the signal mask while a signal handler is executing.

© Write a program that:

e Blocks all signals except SIGINT. This will require the use of
sigprocmask() (slides 5-35 + 5-36) as well as the APls for
manipulating signal sets (slide 5-32).

e Uses sigaction() (slides 5-13, 5-14, and 5-24) to establish a
SIGINT handler that does nothing but return.

e Calls pause() to wait for a signal.

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-42 §5.8

Exercises

o After pause() returns:

e determines the set of pending signals for the process (use
sigpending(), slide 5-37);

@ tests which signals are in that set (use sigismember(),
iterating through all signals in the range 1 <= s < NSIG; see
slide 5-18);

@ and prints the descriptions of those signals (strsignal()).

Run the program and send it various signals (other than SIGINT and
signals that are ignored by default), using either the kill command from
another terminal (kill -<sig> <pid>), or by typing signal-generating
keys from the terminal where you run the program (Control-Z for
SIGTSTP, Control-\(or Control-4) for SIGQUIT). Then type Control-C
to generate SIGINT and inspect the list of pending signals displayed by
the program.

[Exercises continue on following slide]

System Programming Essentials ©2025 M. Kerrisk Signals 5-43 §5.8

Exercises

@ Extend the program created in the preceding exercise so that:

@ Just after installing the handler for SIGINT, the program also
installs a handler for SIGQUIT (generated when the Control-\ key
is pressed). The handler should print a message “SIGQUIT
received”, and return.

e After displaying the list of pending signals, the program unblocks
SIGQUIT and calls pause() once more. (/\ Which how value
should be given to sigprocmask()?)

While the program is blocking signals (i.e., before typing Control-C), try
typing Control-\ multiple times. After Control-C is typed, how many
times does the SIGQUIT handler display its message? Why?

© If you run the program once more, and then from another terminal send
the SIGKILL signal to the program (kill -KILL <pid>), what
happens? Why?

org

System Programming Essentials ©2025 M. Kerrisk Signals 5-44 §5.8

Outline

5 Signals 5-1

5.9 Homework exercises 5-45

Homework exercises

© Suppose that a program has blocked a certain signal, and
that signal has been generated and is pending for the
process. What do you suppose will happen if the program
changes the disposition of the signal to “ignore” (SIG_IGN)?
Will the signal still be pending? Write a test program to
verify your answer.

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-46 §5.9

Outline

5 Signals 5-1

5.10 Designing signal handlers 5-47

Designing signal handlers

@ Signal handlers can, in theory, do anything

@ But, complex signal handlers can easily have subtle bugs
(e.g., race conditions)

e E.g., if main program and signal handler access same global
variables

o /\ Read signal-safety(7) manual page!

@ = Design signal handlers to be as simple as possible

.org

System Programming Essentials ©2025 M. Kerrisk Signals 5-48 §5.10

Designing signal handlers

@ Some simple signal-handler designs:
e Set a global flag and return

e Main program periodically checks (and clears) flag, and takes
appropriate action

@ (See the discussion of sig_atomic_t in TLPI §21.1.3)

e Signal handler does some clean-up and terminates process
o (TLPI §21.2)

e Signal handler performs a nonlocal goto to unwind stack
o sigsetimp() and siglongjmp() (TLPI §21.2.1)

@ E.g., some shells do this when handling signals

System Programming Essentials ©2025 M. Kerrisk Signals 5-49 §5.10

Signals are not queued

@ Signals are not queued

@ A blocked signal is marked just once as pending, even if
generated multiple times
@ = One signal may correspond to multiple “events”
e Must design programs that handle signals to allow for this

e Example:
@ SIGCHLD is generated for parent when child terminates

@ While SIGCHLD handler executes, SIGCHLD is blocked
@ Suppose two more children terminate while handler executes
@ Only one SIGCHLD signal will be queued

@ Solution: SIGCHLD handler should loop, checking if multiple
children have terminated

org

System Programming Essentials ©2025 M. Kerrisk Signals 5-50 §5.10

This page intentionally blank

This page intentionally blank

Linux System Programming Essentials

Process Lifecycle

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

6 Process Lifecycle

6.1 Introduction

6.2 Creating a new process: fork()
6.3 Exercises

6.4 Process termination

6.5 Monitoring child processes

6.6 Orphans and zombies

6.7 APl summary

0.8 Exercises

6.9 The SIGCHLD signal

6.10 Executing programs: execve()
6.11 Exercises

6.12 The exec() library functions

6-1

6-6
6-10
6-13
6-19
6-31
6-37
6-39
0-42
6-46
6-55
6-58

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3

Creating processes and executing programs

Four key system calls (and their variants):
@ fork(): create a new (“child") process
@ exit(): terminate calling process
e wait(): wait for a child process to terminate

@ execve(): execute a new program in calling process

[TLPI §24.1]

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-4 §6.1

Using fork(), execve(), wait(), and

exit() together

running program A

l M

[Parent process J

ork e
f () mor ory Ofparent
| “OPied to chifg
Parent may perform

Child process
running program A

other actions here

:

wait(&wstatus) b ity

l

execve(B, ...)

'

0]

Execution of

pc?]-e
parent blocks 2

Child process
running program B

|
|
|
|

Kernel unblocks parent

'

exit(status)

and delivers SIGCHLD

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-5 §6.1
Outline
6 Process Lifecycle 6-1
6.2 Creating a new process: fork() 6-6

Creating a new process: fork()

#include <unistd.h>
pid_t fork(void);

fork() creates a new process (“the child”)
e Child is a near exact duplicate of caller (“the parent”)

@ Notionally, memory of parent is duplicated to create child
e In practice, copy-on-write duplication is used
@ = Only page tables must be duplicated at time of fork()

@ Two processes share same (read-only) text segment

@ Two processes have separate copies of stack, data, and heap

segments
e = Each process can modify variables without affecting other
process
[TLPI §24.2]
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-7 §6.2

Return value from fork()

#include <unistd.h>
pid_t fork(void);

@ Both processes continue execution by returning from fork()

o fork() returns different values in parent and child:
o Parent:
@ On success: PID of new child (allows parent to track child)

e On failure: -1

e Child: returns O
@ Child can obtain its own PID using getpid()

@ Child can obtain PID of parent using getppid()

org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-8 §6.2

Using fork()

Common idioms for using fork():

pid_t pid = forkQ; pid_t pid = forkQ;
switch (pid) {
if (pid == -1) { case -1:
/* Handle error */ /* Handle error */
break;
} else if (pid == 0) { case O:
/* Code executed by child */ /* Code executed by child */
break;
} else { default:
/* Code executed by parent */ /* Code executed by parent */
break;
} }
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-9 §6.2
Outline
6 Process Lifecycle 6-1

6.3 Exercises 0-10

Exercise

@ Write a program that uses fork() to create a child process
([template: procexec/ex.fork_var_test.c|). After the fork() call,
both the parent and child should display their PIDs (getpid()). Include
code to demonstrate that the child process created by fork() can modify
its copy of a local variable in main() without affecting the value in the
parent’s copy of the variable.

Note: you may find it useful to use the sleep(num-secs) library
function to delay execution of the parent for a few seconds, to ensure
that the child has a chance to execute before the parent inspects its
copy of the variable.

@ Processes have many attributes. When a new process is created using
fork(), which of those attributes are inherited by the child and which are
not (e.g., are reset to some default)? Here, we explore whether two
process attributes—signal dispositions and alarm timers—are inherited by
a child process.

[Exercise continues on the next slide]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-11 §6.3

Exercise

Write a program ([template: procexec/ex.inherit_alarm.c|) that
performs the following steps in order to determine if a child process
inherits signal dispositions and alarm timers from the parent:

e Establishes a SIGALRM handler that prints the process's PID.
e Starts an alarm timer that expires after two seconds. Do this using

the call alarm(2). When the timer expires, it will notify by sending
a SIGALRM signal to the process.

e Creates a child process using fork().

o After the fork(), the child fetches the disposition of the SIGALRM
signal (sigaction()) and tests whether the sa_handler field in the
returned structure is the address of the signal handler

@ Both processes then loop 5 times, sleeping for half a second (use
usleep()) and displaying the process PID. Which of the processes
receives a SIGALRM signal?

org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-12 §6.3

Outline

6 Process Lifecycle 6-1

6.4 Process termination 6-13

Terminating a process

A process can terminate itself using two APls:
o _ exit(2) (system call)
e exit(3) (library function)

[TLPI §25.1]

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-14 §6.4

Terminating a process with _ exit(2)

#include <unistd.h>
void _exit(int status);

_exit() terminates the calling process

e AKA normal termination
e abnormal termination == killed by a signal

(In truth: on Linux, _exit() is a wrapper for Linux-specific exit_group(2),
which terminates all threads in a process)

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-15 §6.4

Process exit status

#include <unistd.h>
void _exit(int status);

@ Least significant 8 bits of status define exit status
e Remaining bits ignored
@ 0 == success
e nonzero == failure

@ POSIX specifies two constants:

#define EXIT_SUCCESS O
#define EXIT_FAILURE 1

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-16 §6.4

Terminating a process with exit(3)

@ Most programs employ exit(3), rather than _exit(2)

#include <stdlib.h>
void exit(int status);

@ The exit(3) library function:
o Calls exit handlers registered by process (TLPI §25.3)

e Exit handler == callback function automatically called at
normal process termination

e atexit(3), on_exit(3)
e Flushes stdio buffers

o Calls: exit(status)

o (If we call _exit() directly, then exit handlers are not called
and stdio buffers are not flushed)

@ return n inside main() is equivalent to exit (n)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-17 §6.4

Process teardown

As part of process termination (normal or abnormal), the kernel
performs various clean-ups:

@ All open file descriptors are closed
e Associated file locks are released

@ Open POSIX IPC objects are closed (message queues,
semaphores, shared memory)

@ Memory mappings are unmapped
@ Memory locks are removed
e System V shared memory segments are detached

@ And more...

[TLPI §25.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-18 §6.4

Outline

6 Process Lifecycle 6-1
6.5 Monitoring child processes 6-19
Overview

@ Parent processes can use the “wait” family of APlIs to
monitor state change events in child processes:

e Termination
o Stop (because of a signal)
o Continue (after SIGCONT signal)

@ Parent can obtain various info about state changes:
e Exit status of process

e What signal stopped or killed process

e Whether process produced a core dump before terminating

@ For historical reasons, there are multiple “wait” functions

org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-20 §6.5

Wiaiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

@ waitpid() waits for a child process to change state
e No child has changed state = call blocks

e Child has already changed state = call returns immediately

@ wstatus argument returns wait status value that describes
child state transition

e wstatus can be NULL, if we don't need this info
o (More details later)
@ Return value:
@ On success: PID of child whose status is being reported

e On error, -1
@ No more children? = errno set to ECHILD

[TLPI §26.1.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-21 §6.5

Wiaiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

pid specifies which child(ren) to wait for:
@ pid == —1: any child of caller
@ pid > 0: child whose PID equals pid

@ (plus other possibilities, as documented in manual page)

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-22 §6.5

Wiaiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

e By default, waitpid() reports only terminated children

@ The options bit mask can specify additional state changes to
report:
e WUNTRACED: report stopped children

e WCONTINUED: report stopped children that have continued

@ Specifying WNOHANG in options causes nonblocking wait

o If no children have changed state, waitpid() returns
immediately, with return value of 0

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-23 §6.5

waitpid() example

Wait for all children to terminate, and report their PIDs:

for (5;) {
childPid = waitpid(-1, NULL, 0);
if (childPid == -1) {
if (errno == ECHILD) {
printf ("No more children!\n");

break;
} else { /* Unexpected error */

errExit ("waitpid");
}
}

printf ("waitpid() returned PID %1d\n", (long) childPid);

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-24 §6.5

The wait status value

@ wstatus distinguishes 4 types of event:
o Child terminated via __exit(), specifying an exit status

e Child was killed by a signal
e Child was stopped by a signal

e Child was continued by a signal

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-25 §6.5

The wait status value

16 lowest bits of wstatus returned by waitpid() encode status in
such a way that the 4 cases can be distinguished:

15 «—— bits —— 8 7 0
Normal termination exit status (0-255) 0
Killed by signal unused (0) termination signal (!= 0)

t core dumped flag

Stopped by signal stop signal ox7F

Continued by signal oxFFFF

(Encoding is an implementation detail we don’t really need to care about)

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-26 §6.5

Dissecting the wait status

@ <sys/wait.h> defines macros for dissecting a wait status

@ Only one of the headline macros in this list will return true:
@ WIFEXITED(wstatus): true if child exited normally
@ WEXITSTATUS (wstatus) returns exit status of child

© WIFSIGNALED(wstatus): true if child was killed by signal
@ WTERMSIG(wstatus) returns number of killing signal

@ WCOREDUMP (wstatus) returns true if child dumped core
© WIFSTOPPED (wstatus): true if child was stopped by signal
@ WSTOPSIG(wstatus) returns number of stopping signal

@ WIFCONTINUED (wstatus): true if child was resumed by
SIGCONT

@ The subordinate macros may be used only if the
corresponding headline macro tests true

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-27 §6.5

Example: procexec/print wait status.c

Display wait status value in human-readable form

void printWaitStatus(const char *msg, int status) {
if (msg '= NULL)
printf ("%s", msg);

if (WIFEXITED(status)) {
printf("child exited, status=)d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {
printf("child killed by signal %d (%s)",
WTERMSIG(status), strsignal (WTERMSIG(status)));
if (WCOREDUMP (status))
printf (" (core dumped)");
printf("\n");

} else if (WIFSTOPPED(status)) {
printf("child stopped by signal %d (%s)\n",
WSTOPSIG(status), strsignal (WSTOPSIG(status)));

} else if (WIFCONTINUED(status))
printf("child continued\n");

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-28 §6.5

An older wait API: wait()

#include <sys/wait.h>
pid_t wait(int *wstatus);

@ The original “wait” API
@ wait(&wstatus) == waitpid(-1, &wstatus, 0)

@ Still commonly used to handle the simple, common case:
wait for any child to terminate

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-29 §6.5

An newer wait API: waitid()

#include <sys/wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

e Similar to waitpid(), but provides additional functionality,
including:
o Independently choose which events (termination / stopped /
continued) to wait on
e waitpid() always waits for at least termination events

e Wait via PID file descriptor

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-30 §6.5

Outline

6 Process Lifecycle 6-1
6.6 Orphans and zombies 6-31
Orphans

@ An orphan is a process that lives longer than its parent
@ Orphaned processes are adopted by init
@ init waits for its adopted children when they terminate

@ After orphan is adopted, getppid() returns PID of init
e Conventionally, init has PID 1

@ On systems where the init system is systemd, then,
depending on the configuration, things are different:

o A helper process (PID != 1) becomes parent of orphaned
children

@ When run with the --user option, systemd organizes all
processes in the user's session into a subtree with such a
subreaper

o See discussion of PR_SET_CHILD_SUBREAPER in prct/(2)

[TLPI §26.2]

org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-32 §6.6

Zombies

@ Suppose a child terminates before parent waits for it
@ Parent must still be able to collect status later

@ = Child becomes a zombie:
e Most process resources are recycled
e A process slot is retained

e PID, status, and resource usage statistics

@ Zombie is removed when parent does a “wait”

org [TLPI §26.2]
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-33 §6.6
Creating a zombie: procexec/zombie.c
Usage: zombie [num-zombies [sleep-secs]]

1| int main(int argc, char *argv[]) {

2 int nzombies = (argc > 1) ? atoi(argv[1]) : 1;

3 int sleepSecs = (argc > 2) ? atoi(argv[2]) : O;

4 printf ("Parent (PID %1d)\n", (long) getpid());

5

6 for (int j = 0; j < nzombies; j++) {

7 switch (fork()) {

8 case -1:

9 errExit ("fork-%d", j);

10 case O: /* Child: exits to become zombie */

11 printf("Child (PID %1d) exiting\n", (long) getpid());

12 if (sleepSecs > 0);

13 sleep(sleepSecs);

14 exit (EXIT_SUCCESS) ;

15 default: /* Parent continues in loop */

16 break;

17 }

18 b

19 sleep(3600); /* Children are zombies during this time */
20 while (wait(NULL) > 0) /* Reap zombie children */

21 continue;

22 exit (EXIT_SUCCESS) ;

23|}

@ Create one or more zombie child processes

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-34 §6.6

Creating a zombie: procexec/zombie.c

1/$./zombie &

2| [1] 23425

3| Parent (PID 23425)

4| Child (PID 23427) exiting

5/ $ ps -C zombie

6 PID TTY TIME CMD

7| 23425 pts/1 00:00:00 zombie

8| 23427 pts/1 00:00:00 zombie <defunct>
9|$ kill -KILL 23427

10/ $ ps -C zombie

11 PID TTY TIME CMD

12| 23425 pts/1 00:00:00 zombie

13| 23427 pts/1 00:00:00 zombie <defunct>

@ Zombies can’t be killed by signals!
o (Since parent must still be able to “wait")

o Even silver bullets (SIGKILL) don't work

org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-35 §6.6

Reap your zombies

e Zombie may live for ever, if parent fails to “wait” on it
e Or until parent is killed, so zombie is adopted by init

@ Long-lived processes that create children must ensure
that zombies are “reaped” (“waited"” for)

e Shells, network servers, ...

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-36 §6.6

Outline

6 Process Lifecycle

6.7 APl summary

6-1

6-37

APl summary

pid_t fork(void);

void _exit(int status);
void exit(int status);

pid_t wait(int *wstatus);

struct sigaction sa;
sa.sa_handler = func;
sa.sa_flags = 0;
sigemptyset (&sa.sa_mask) ;

sigaction(SIGCHLD, &sa, NULL);

// Wait for (and return PID of) a child process:
pid_t waitpid(pid_t pid, int *wstatus, int options);

// Setting up handler for SIGCHLD:

// Create a child process; returns
// PID of child in parent, and O in child

// Terminate process
// Call exit handlers, flush stdio, and
// terminate process

// Address of signal handler

// Or possibly SA_RESTART

// Assuming we don't need to block any other
// signals while handler runs

.org

System Programming Essentials ©2025 M. Kerrisk

Process Lifecycle 6-38 §6.7

Outline

6 Process Lifecycle 6-1
6.8 Exercises 6-39
Exercise

© Suppose that we have three processes related as grandparent (A),
parent (B), and child (C), and that the parent exits after a few seconds,
but the grandparent does not immediately perform a wait() after the

parent exits, with the result that the parent becomes a zombie, as in
the following diagram.

Y

fork()
Jfork()
6 ___—0©
sleep(6) sleep(3)

exit() F----- @

waitpid(B) - — - - - —— - — = — — — — @

.org
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-40 §6.8

Exercise

When do you expect the child (C) to be adopted by init (so that getppid() in the
child returns 1): after the parent (B) terminates or after the grandparent (A) does a
wait()? In other words, is the child adopted at point 1 or point 2 in the diagram?
Write a program, [(minimal) template: procexec/ex.zombie_parent.c|, to verify
the answer.

Note the following points:
@ For a reminder of the usage of fork(), see slide 6-9.

@ You will need to use to sleep() in various parts of the program:
@ The child (C) could loop 10 times, displaying the value returned by
getppid() and sleeping for 1 second on each loop iteration.
@ The parent (B) sleeps for 3 seconds before terminating.

@ The grandparent (A) sleeps for 6 seconds before calling waitpid() on the
PID of the parent (B).

@ Depending on your distribution (e.g., if you have a systemd-based system
where the --user flag is employed), you may find that the orphaned child is
reparented to a process other than PID 1. Find out what program is running in
that process, by using the command ps <pid>.

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-41 §6.8

Outline

6 Process Lifecycle 6-1

6.9 The SIGCHLD signal 6-42

The SIGCHLD signal

@ SIGCHLD is generated for a parent when a child terminates
@ lgnored by default

@ Catching SIGCHLD allows us to be asynchronously notified of
child’s termination

e Can be more convenient than synchronous or nonblocking
waitpid() calls

@ Within SIGCHLD handler, we “wait” to reap zombie child

[TLPI §26.3]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-43 §6.9

A SIGCHLD handler

void grimReaper(int sig) {
int savedErrno = errno;
while (waitpid(-1, NULL, WNOHANG) > 0)
continue;
errno = savedErrno;

e Each waitpid() call reaps one terminated child

@ while loop handles possibility that multiple children terminated
while SIGCHLD was blocked

e e.g., during earlier invocation of handler
@ WNOHANG: don't block if there are no more terminated children

@ Loop terminates when waitpid() returns:

e 0, meaning no more terminated children
e —1, probably with errno == ECHILD, meaning no more children

@ Save and restore errno, so that handler is reentrant (TLPI p427)

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-44 §6.9

SIGCHLD for stopped and continued children

@ SIGCHLD is also generated when a child stops or continues
@ To prevent this, specify SA_ NOCLDSTOP in sa_flags when

establishing SIGCHLD handler with sigaction()

[TLPI §26.3.2]
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-45 §6.9
Outline
6 Process Lifecycle 6-1
6.10 Executing programs: execve() 6-46

Executing a new program

execve() loads a new program into calling process’'s memory
@ Old program, stack, data, and heap are discarded
@ After executing run-time start-up code, execution commences
in new program’s main()
@ Various functions layered on top of execve():
e Provide variations on functionality of execve()

o Collectively termed “exec()”
@ See exec(3) manual page

[TLPI §27.1]

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-47 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argvl[],
char *const envpl[]);

@ execve() loads program at pathname into caller's memory

@ pathname is an absolute or relative pathname

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-48 §6.10

Executing a new program with execve()

#include <unistd.h>

int execve(const char *pathname, char *const argvl[],
char *const envpl[]);

@ argv specifies command-line arguments for new program
o Defines argv argument for main() in new program
e NULL-terminated array of pointers to strings

@ argv[0] is command name

o Typically, same as (basename part of) pathname

e Program can vary its behavior, depending on value of argv/[0]
(e.g., busybox)

e See example programs

@ procexec/launch_shell.c (“-" in argv[0][0] when execing
a shell triggers “login shell” behavior)

@ procexec/execve_argv_expt.c

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle

6-49 §6.10

Executing a new program with execve()

#include <unistd.h>

int execve(const char *pathname, char *const argvl[],
char *const envpl[]);

@ envp specifies environment list for new program
e Defines environ in new program

e NULL-terminated array of pointers to strings

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle

6-50 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argvl[],
char *const envpl[]);

@ Successful execve() does not return

o If execve() returns, it failed; no need to check return value:

execve (pathname, argv, envp);
perror("execve");
exit (EXIT_FAILURE) ;

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-51 §6.10

Example: procexec/exec_status.c

./exec_status command [args...]

@ Create a child process

@ Child executes command with supplied command-line
arguments

@ Parent waits for child to terminate, and reports wait status

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-52 §6.10

Example: procexec/exec_status.c

1| extern char **environ;

2| int main(int argc, char *argv([]) {

3 pid_t childPid, wpid;

4 int wstatus;

5 e

6 switch (childPid = fork()) {

7 case -1: errExit("fork");

8

9 case O: /* Child */

10 printf ("PID of child: %1d\n", (long) getpid());
11 char **nextArgv = &argv[1]; // argv for next program
12 char *progName = nextArgv[0];

13 execve (progName, nextArgv, environ);

14 errExit ("execve");

15

16 default: /* Parent */

17 wpid = waitpid(childPid, &wstatus, 0);

18 if (wpid == -1) errExit("waitpid");

19 printf("Wait returned PID %1ld\n", (long) wpid);
20 printWaitStatus (" " wstatus);
21 }
22 exit (EXIT_SUCCESS);
23| }

.org
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-53 §6.10

Example: procexec/exec_status.c

1/$./exec_status /bin/date

2|PID of child: 4703

3| Thu Oct 24 13:48:44 NZDT 2013

4| Wait returned PID 4703

5 child exited, status=0

6|$./exec _status /bin/sleep 60 &

7| [1] 4771

8|PID of child: 4773

9/$ kill 4773

10| Wait returned PID 4773

11 child killed by signal 15 (Terminated)

12| [1]+ Done ./exec_status /bin/sleep 60

.org
System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-54 §6.10

Outline

6 Process Lifecycle 6-1

6.11 Exercises 0-55

Exercise

@ Write a simple shell program. The program should loop, continuously reading shell
commands from standard input. Each input line consists of a set of white-space
delimited words that are a command and its arguments. Each command should be
executed in a new child process (fork()) using execve(). The parent process (the
“shell”) should wait on each child and display its wait status (you can use the
supplied printWaitStatus() function). [template: procexec/ex.simple_shell.c]|

Some hints:

@ The space-delimited words in the input line need to be broken down into a set
of null-terminated strings pointed to by an argv-style array, and that array
must end with a NULL pointer. The strtok(3) library function simplifies this
task. (This task is already performed by code in the template.)

@ Because execve() is used, you will need to type the full pathname when
entering commands to your shell

As a first test of you shell, try executing the following program (which is in the same
directory):

./show_argv a b ¢

Fun facts: the source code of bash is around 180k lines (dash is around 20k lines)

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-56 §6.11

Exercise

@ Write a program, ([template: procexec/ex.exec_self_pid.c|) that verifies that an
exec does not change a process’'s PID.

@ The program should perform the following steps:
@ Print the process’'s PID.

@ If argcis 2, the program exits.

@ Otherwise, the program uses execl() to re-execute itself with an
additional command-line argument (any string), so that argc will be 2.

@ Test the program by running it with no arguments (i.e., argcis 1).

© Write a program ([template: procexec/ex.make_link.c|) that takes 2 arguments:

make_link target linkpath

If invoked with the name slink, it creates a symbolic link (symlink()) using these
pathnames, otherwise it creates a hard link (link()). After compiling, create two hard
links to the executable, with the names hlink and slink. Verify that when run with
the name hlink, the program creates hard links, while when run with the name slink,
it creates symbolic links.
Hint:

@ You will find the basename() and strcmp() functions useful when inspecting

the program name in argv/0].

.org

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-57 §6.11

Outline

6 Process Lifecycle 6-1

6.12 The exec() library functions 6-58

The exec() library functions

#include

int

/*
int
int
int

/*’
int

<unistd.h>
int execle(const char *pathname, const char *arg,

/* , (char *) NULL, char *const envp[] */);
execlp(const char *filename, const char *arg,
(char *) NULL */);
execvp(const char *filename, char *const argvl[]);

execv(const char *pathname, char *const argvl[]);
execl(const char *pathname, const char *arg,
(char *) NULL */);
execvpe(const char *filename, const *char argv[],
char *const envpl[]);

@ Variations on theme of execve()

o Like execve(), the exec() functions return only if they fail

@ execvpe() is Linux-specific (define _GNU_SOURCE)

org

System Programming Essentials

©2025 M. Kerrisk

Process Lifecycle

6-59 §6.12

The exec() library functions

Vary theme of execve() with 2 choices in each of 3 dimensions:

@ How are command-line arguments of new program specified?

@ How is the executable specified?

@ How is environment of new program specified?

Final letters in name of each function indicate behavior

Function | Specification | Specification Source of

of arguments | of executable environment

(v 1 fle (-, p) (e)
execve() array pathname envp argument
execle() list pathname envp argument
execlp() list filename 4+ PATH | caller’'s environ
execvp() array filename 4+ PATH | caller’s environ
execv() array pathname caller’s environ
execl() list pathname caller’'s environ
execvpe() | array filename + PATH | envp argument

org

System Programming Essentials

©2025 M. Kerrisk

Process Lifecycle

6-60 §6.12

Linux System Programming Essentials

System Call Tracing with strace

Michael Kerrisk, man7.org © 2025

mtk@man7.org

August 2025

Outline

7 System Call Tracing with strace
7.1 Getting started

7.2 Tracing child processes

7.3 Exercises

7.4 Filtering strace output

7.5 System call tampering

7.6 Further strace options

7-1

7-3
7-11
7-15
7-17
7-23
7-29

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
strace(1)

@ A tool to trace system calls made by a user-space process
o Implemented via ptrace(2)

e https://strace.io/

@ Or: a debugging tool for tracing complete conversation
between application and kernel

e Application source code is not required

@ Answer questions like:
e What system calls are employed by application?

e Which files does application touch?
e What arguments are being passed to each system call?
e Which system calls are failing, and why (errno)?

@ See also the loosely related /trace(1) command
o Trace function calls in shared libraries (e.g., libc)

org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-4 §7.1

https://strace.io/

strace(1)

@ Trace information is provided in symbolic form

e System call names are shown
o We see signal names (not numbers)
o Strings printed as characters (up to 32 bytes, by default)

e Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together
e Structures displayed with labeled fields

“Large” arguments are abbreviated by default
e Use strace —v (verbose) to see unabbreviated arguments

org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 75 §7.1

strace(1)

fstat(3, {st_dev=makedev(0x8, 0x5), st_ino=407279,
st_mode=S_IFREG|0755, st_nlink=1, st_uid=0, st_gid=0,
st_blksize=4096, st_blocks=80, st_size=36960, st_atime=1625615479
/* 2021-07-07T01:51:19.795021222+0200 */, st_atime_nsec=795021222,
st_mtime=1613345143 /* 2021-02-15T00:25:43+0100 */, st _mtime_nsec=0,
st_ctime=1616161103 /* 2021-03-19T14:38:23.816838407+0100 */,
st_ctime_nsec=816838407}) = 0

open("/1ib64/1liblzma.so.5", O_RDONLY|O_CLOEXEC) = 3

access("/etc/1ld.so.preload", R_0OK) = -1 ENOENT (No such file or
directory)

For each system call, we see:

@ Name of system call
@ Values passed in/returned via arguments
@ System call return value

@ Symbolic errno value (4 explanatory text) on syscall failures

org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-6 §7.1

Simple usage: tracing a command at the command line

@ A very simple C program:

int main(int argc, char xargv[]) {

#define STR "Hello world\n"
write (STDOUT_FILENO, STR, strlen(STR));
exit (EXIT_SUCCESS) ;

@ Run strace(1), directing logging output (—o) to a file:

$ strace -o strace.log ./hello_world
Hello world

o (By default, trace output goes to standard error)

e /\ On some systems, may first need to to ensure
ptrace_scope file has value 0 or 1:

$ sudo sh -c 'echo 0 > /proc/sys/kernel/yama/ptrace_scope'

e Yama LSM disables ptrace(2) to prevent attack escalation;
see ptrace(2) manual page

ordg

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-7 §7.1

Simple usage: tracing a command at the command line

$ cat strace.log
execve("./hello_world", ["./hello_world"], [/* 110 vars */]) =0

access("/etc/1ld.so.preload", R_0OK) = -1 ENOENT (No such file or directory)
open("/etc/1ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=160311, ...}) =0

mmap (NULL, 160311, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fabecfc0000

close(3) 0

open("/1ib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

12
?

write(1l, "Hello world\n", 12)

exit_group(0)
+++ exited with 0 +++

@ Even simple programs make lots of system calls!
e 25 in this case (many have been edited from above output)

@ Most output in this trace relates to finding and loading
shared libraries

o First call (execve()) was used by shell to load our program

e Only last two system calls were made by our program

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-8 §7.1

A gotcha...

@ The last call in our program was:
exit (EXIT_SUCCESS) ;

@ But strace showed us:

exit_group(0) =7

@ Some detective work:
o We "know" exit(3) is a library function that calls _exit(2)

o But where did exit_group() come from?

o _ exit(2) manual page tells us:

$ man 2 _exit

C library/kernel differences
In glibc up to version 2.3, the _exit() wrapper function
invoked the kernel system call of the same name. Since
glibc 2.3, the wrapper function invokes exit_group(2),
in order to terminate all of the threads in a process.

@ = may need to dig deeper to understand strace(1) output

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 79 §7.1

Tracing live processes

@ —p PID: trace running process with specified PID
e Type Control-C to cease tracing
e To trace multiple processes, specify —p multiple times

e Can trace only processes you own
@ (And a process can have only one tracer)

e /\/\ tracing a process can heavily affect performance
e E.g., up to two orders of magnitude slow-down in syscalls

e /\ Think twice before using in a production environment

@ —p PID —f: will trace all threads in specified process

org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-10 §7.1

Outline

7 System Call Tracing with strace 7-1

7.2 Tracing child processes 7-11

Tracing child processes

@ By default, strace does not trace children of traced process

@ —f option causes children to be traced
e Each trace line is prefixed by PID

e In a program that employs POSIX threads, each line shows
kernel thread 1D (gettid())

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-12 §7.2

Tracing child processes: strace/fork exec.c

1| int main(int argc, char *argv[]) {
2 pid_t childPid;
3 char *newEnv[] = {"ONE=1", "TW0=2", NULL};
4
5 printf ("PID of parent: %1d\n", (long) getpid());
6 childPid = fork();
7 if (childPid == 0) { /* Child */
8 printf ("PID of child: %1d\n", (long) getpid());
9 if (arge > 1) {
10 execve(argv[1], &argv[1l], newEnv);
11 errExit ("execve");
12 T
13 exit (EXIT_SUCCESS) ;
14 Iy
15 wait (NULL) ; /* Parent waits for child */
16 exit (EXIT_SUCCESS) ;
17}
$ strace -f -o strace.log ./fork_exec
PID of parent: 1939
PID of child: 1940
System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-13 §7.2

Tracing child processes: strace/fork exec.c

$ cat strace.log
1939 execve("./fork_exec", ["./fork_exec"]l, [/* 110 vars */]) = 0O

1939 clone(child_stack=0, f1ags=CLUNE_CHILD_CLEARTID|CLUNE_CHILD_SETTID|SIGCHLD,
child_tidptr=0x7fe484b2eall) = 1940

1939 wait4(-1, <unfinished ...>

1940 write(1, "PID of child: 1940\n", 21) = 21

1940 exit_group(0) =7

1940 +++ exited with 0 +++

1939 <... wait4 resumed> NULL, O, NULL) = 1940

1939 --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=1940,
si_uid=1000, si_status=0, si_utime=0, si_stime=0} ---
1939 exit_group(0) =7

1939 +++ exited with 0 +++

@ Each line of trace output is prefixed with corresponding PID
e Inside glibc, fork() is actually a wrapper that calls clone(2)
e wait() is a wrapper that calls wait4(2)

@ We see two lines of output for wait4() because call blocks
and then resumes

@ strace shows us that parent received a SIGCHLD signal

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-14 §7.2

Outline

7 System Call Tracing with strace 7-1
7.3 Exercises 7-15
Exercises

© Try using strace to trace the execution of a program of your
choice.

@ Some amusements (may require the value 0 in
/proc/sys/kernel/yama/ptrace_scope):
e strace -p $%

e strace strace -p $$

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-16 §7.3

Outline

7 System Call Tracing with strace

7.4 Filtering strace output

r-1

r-17

Selecting system calls to be traced

@ strace —e can be used to select system calls to be traced
@ —e trace=<syscall>[<syscall>...]
o Specify system call(s) that should be traced
e Other system calls are ignored
$ strace -o strace.log -e trace=open,close 1ls
@ —e trace=!<syscall>[,<syscall>...]
o Exclude specified system call(s) from tracing
@ Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)
o /\ “I" needs to be quoted to avoid shell interpretation
@ —e trace=/<regexp>
e Trace syscalls whose names match regular expression
e April 2017; expression will probably need to be quoted...
System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-18 §7.4

Selecting system calls by category

@ —e trace=<syscall-category> trace a category of syscalls

@ Categories include:
o %file: trace all syscalls that take a filename as argument
e open(), stat(), truncate(), chmod(), setxattr(), link()...
o %desc: trace file-descriptor-related syscalls
o read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fentl(), epoll_create(), epoll_wait()...
o %process: trace process management syscalls
o fork(), clone(), exit_group(), execve(), wait4(), unshare()...
o %network: trace network-related syscalls
e socket(), bind(), listen(), connect(), sendmsg()...
o %signal: trace signal-related syscalls
e kill(), rt_sigaction(), rt_sigprocmask(), rt_sigqueueinfo()...

e %memory: trace memory-mapping-related syscalls
e mmap(), mprotect(), mlock()...

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-19 §7.4

Filtering signals

@ strace —e signal=set
e Trace only specified set of signals

e “sig” prefix in names is optional; following are equivalent:

$ strace -e signal=sigio,sigint 1ls > /dev/null
$ strace -e signal=io,int 1ls > /dev/null

@ strace —e signal=Iset
e Exclude specified signals from tracing

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-20 §7.4

Filtering by pathname

@ strace —P pathname: trace only system calls that access file
at pathname

e Specify multiple —P options to trace multiple paths

@ Example:

$ strace -o strace.log -P /lib64/libc.so.6 1ls > /dev/null

Requested path '/1ib64/libc.so.6' resolved into '/usr/1ib64/libc-2.18.so'

$ cat strace.log

open("/1ib64/1libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\36\2\0\0\0\0\0". ..,
832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=2093096, ...}) = 0

mmap (NULL, 3920480, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE,
3, 0) = 0x7£8511fa3000

mmap (0x7£8512356000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b3000) = 0x7£8512356000

close(3) =0

+++ exited with O +++

e strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-21 §7.4

Mapping file descriptors to pathnames

@ —y option causes strace to display pathnames corresponding
to each file descriptor
e Useful info is also displayed for other types of file descriptors,
such as pipes and sockets

$ strace -y cat greet

openat (AT_FDCWD, "greet", O_RDONLY) = 3</home/mtk/greet>
fstat(3</home/mtk/greet>, {st_mode=S_IFREG|0644, ...

read (3</home/mtk/greet>, "hello world\n", 131072) = 12
write(1</dev/pts/11>, "hello world\n", 12) = 12
read(3</home/mtk/greet>, "", 131072) = 0
close(3</home/mtk/greet>) =0

@ —yyis as for —y but shows additional protocol-specific info for
sockets

write(3<TCP:[10.0.20.135:33522->213.131.240.174:80]>,
"GET / HTTP/1.1\r\nUser-Agent: Wget"..., 135) = 135
read (3<TCP:[10.0.20.135:33522->213.131.240.174:80]>,
"HTTP/1.1 200 OK\r\nDate: Thu, 19 J"..., 253) = 253

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-22 §7.4

Outline

7 System Call Tracing with strace 7-1

7.5 System call tampering 7-23

System call tampering

@ strace can be used to modify behavior of selected syscall(s)
e Initial feature implementation completed in early 2017

@ Various possible effects:
o Inject delay before/after syscall

e Generate a signal on syscall

e Bypass execution of syscall, making it return a “success”
value or fail with specified value in errno (error injection)

o (Limited) ability to choose which invocation of syscall will be
modified

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-24 §7.5

strace —e inject options

@ Syntax: strace -e inject=<syscall-set>[: <option>]...
e syscall-set is set of syscalls whose behavior will be modified
@ :error=errnum: syscall is not executed; returns failure
status with errno set as specified

@ :retval=value: syscall is not executed; returns specified
“success” value

e Can't specify both :retval and :error together

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-25 §7.5

strace -e inject options

@ :signal=sig: deliver specified signal on entry to syscall

@ :delay_enter=usecs, :delay_exit=usecs: delay for usecs
microseconds on entry to/return from syscall

@ :when=expr: specify which invocation(s) to tamper with
e :when=/N: tamper with invocation N
e :when=N+: tamper starting at Nth invocation

e :when=N-+S: tamper with invocation N, and then every S
Invocations

e Range of Nand Sis 1..65535

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-26 §7.5

Example

$ strace -y -e close -e inject=close:error=22:when=3 /bin/ls > d

close(3</etc/1ld.so.cache>) =0
close(3</usr/1ib64/libselinux.so.1>) =0
close(3</usr/1ib64/libcap.so0.2.25>) = -1 EINVAL (Invalid argument) (INJECTED)

close(3</usr/1ib64/libcap.so0.2.25>) 0

/bin/ls: error while loading shared libraries: libcap.so.2:
cannot close file descriptor: Invalid argument

+++ exited with 127 +++

@ Use —y to show pathnames corresponding to file descriptors
@ Inject error 22 (EINVAL) on third call to close()

@ Third close() was not executed; an error return was injected
o (After that, /s got sad)

org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-27 §7.5

Using system call tampering for error injection

@ Success-injection example: make unlinkat() succeed, without
deleting temporary file that would have been deleted
@ Error-injection use case: quick and simple black-box testing
e Does application fail gracefully when encountering
unexpected error?

@ But there are alternatives for black-box testing:

e Preloaded library with interposing wrapper function that
spoofs a failure (without calling “real” function)

e Can be more flexible
e But can’t be used with set-UID /set-GID programs

o Seccomp (secure computing)

e Generalized facility to block execution of system calls based
on system call number and argument values

@ More powerful, but can't, for example cause Nth call to fail

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-28 §7.5

Outline

7 System Call Tracing with strace 7-1

7.6 Further strace options 7-29

Obtaining a system call summary

@ strace —c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null

% time seconds usecs/call calls errors syscall
21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl
8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close

100.00 0.002976 442 13 total

@ Treat time measurements as indicative only, since strace adds
overhead to each syscall

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-30 §7.6

Further strace options

@ —k: print a stack trace after each traced syscall

@ sudo strace —u <username> prog: run program with UID
and GIDs of specified user
e Useful when tracing privileged programs, such as
set-UID-root programs
@ Normally, privileged programs are not run with privilege when
executed under strace

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-31 §7.6

Further strace options

@ —v: don't abbreviate arguments (structures, etc.)
e Output can be quite verbose...

@ —s strsize: maximum number of bytes to display for strings
e Default is 32 characters
e Pathnames are always printed in full

@ Various options show start time or duration of system calls
e —t, —tt: prefix each trace line with wall-clock time
e —tt also adds microseconds
e —/: show time spent in syscall

e But treat as indications only, since strace causes overhead on
syscalls

.org

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-32 §7.6

Linux System Programming Essentials

Wrapup

Michael Kerrisk, man7.org © 2025

August 2025

mtk@man7.org

Outline

8 Wrapup 8-1
8.1 Wrapup 8-3

Outline

8 Wrapup 3-1
8.1 Wrapup 8-3

Course materials

@ |I'm the (sole) producer of the course book and example
programs

@ Course materials are continuously revised

@ Send corrections and suggestions for improvements to
mtk@man7.org

.org

System Programming Essentials ©2025 M. Kerrisk Wrapup 8-4 §8.1

Marketing

@ Independent trainer, consultant, and writer

e Author of The Linux Programming Interface

@ Reputation / word-of-mouth are important for my business...

@ Let people know about these courses!
@ Linux/UNIX system programming

@ Linux security and isolation APls
@ Namespaces, cgroups, seccomp, and capabilities

@ System programming for Linux containers

e Building and using shared libraries

@ Linux/UNIX network programming
e TCP/IP fundamentals

@ Subsets/combinations of the above; see next slide

@ Further courses to be announced: http://man7.org/training/

orqg

System Programming Essentials

©2025 M. Kerrisk Wrapup 8-5 §8.1

Course overview (see https://man7.org/training)

Linux/UNIX System Programming (LUSPO1, 5 days)

System Programming Fundamentals Threads and IPC Programming
(SPINTROOL, 2 days)

Y

(TIPCO1, 3 days)

POSIX Threads IPC Programming
(PTHRO1, 1 day) (IPC02, 3 days)

System Programming for Linux Containers (SPLC02, 5 days)

System Prog.

Linux Security and Isolation APIs (SECISOL02, 4 days)

Essentials
(SPESSO1, 1d)

Y

Capabilities + Namespaces Seccomp Control Groups

(CAPNSO1, 2 days) (SECCOMPO1, 1d) | | (CGROUPS02, 1d)

Linux/UNIX Network
Prog. (NWPO03, 3 days)

TCP/IP Fundamentals
(TCPIPO1, 1 day)

Linux Shared Libraries
(SHLIBO04, 2.5 days)

@ Nesting indicates a topic that can be taken either as a
separate course or as part of a longer course

@ Arrows show a suggested prerequisite course

http://man7.org/training/
https://man7.org/training
https://man7.org/training/lusp/
https://man7.org/training/spintro/
https://man7.org/training/tipc/
https://man7.org/training/ipc/
https://man7.org/training/pthr/
https://man7.org/training/splc/
https://man7.org/training/secisol/
https://man7.org/training/capns/
https://man7.org/training/cgroups/
https://man7.org/training/cgroups/
https://man7.org/training/spess/
https://man7.org/training/nwp/
https://man7.org/training/tcpip/
https://man7.org/training/shlib/

mtk@man7.org

Thanks!

©mbkerrisk linkedin.com /in /mkerrisk

PGP fingerprint: 4096R/3A35CE5E

http://man7.org/training/

http://man7.org/training/

	Course Introduction 1-1
	Course overview 1-3
	Course materials and resources 1-9
	Common abbreviations 1-13
	Introductions 1-15

	Fundamental Concepts 2-1
	Error handling 2-3
	System data types 2-10
	Notes on code examples 2-15

	File I/O 3-1
	File I/O overview 3-3
	open(), read(), write(), and close() 3-8
	API summary 3-20
	Exercises 3-22

	Processes 4-1
	Process IDs 4-3
	Process memory layout 4-6
	Command-line arguments 4-9
	The environment list 4-12
	The /proc filesystem 4-17

	Signals 5-1
	Overview of signals 5-3
	Signal dispositions 5-8
	Useful signal-related functions 5-16
	Signal handlers 5-21
	Exercises 5-25
	Signal sets, the signal mask, and pending signals 5-30
	API summary 5-39
	Exercises 5-41
	Homework exercises 5-45
	Designing signal handlers 5-47

	Process Lifecycle 6-1
	Introduction 6-3
	Creating a new process: fork() 6-6
	Exercises 6-10
	Process termination 6-13
	Monitoring child processes 6-19
	Orphans and zombies 6-31
	API summary 6-37
	Exercises 6-39
	The SIGCHLD signal 6-42
	Executing programs: execve() 6-46
	Exercises 6-55
	The exec() library functions 6-58

	System Call Tracing with strace 7-1
	Getting started 7-3
	Tracing child processes 7-11
	Exercises 7-15
	Filtering strace output 7-17
	System call tampering 7-23
	Further strace options 7-29

	Wrapup 8-1
	Wrapup 8-3

