Linux
Security and Isolation APIs

Essentials

Michael Kerrisk
man7.org

October 2025

© 2025, man7.org Training and Consulting /
Michael Kerrisk (mtk@man7.org). All rights reserved.

These training materials have been made available for personal,
noncommercial use. Except for personal use, no part of these training
materials may be printed, reproduced, or stored in a retrieval system. These
training materials may not be redistributed by any means, electronic,
mechanical, or otherwise, without prior written permission of the author. If
you find these materials hosted on a website other than the author’s own
website (http://man7.org/), then the materials are likely being distributed
in breach of copyright. Please report such redistribution to the author.

These training materials may not be used to provide training to others
without prior written permission of the author.

Every effort has been made to ensure that the material contained herein is
correct, including the development and testing of the example programs.
However, no warranty is expressed or implied, and the author shall not be
liable for loss or damage arising from the use of these programs. The
programs are made available under Free Software licenses; see the header
comments of individual source files for details.

For information about this course, visit
http://man7.org/training/.

For inquiries regarding training courses, please contact us at
training@man?.org.

Please send corrections and suggestions for improvements to this
course material to training@man7.org.

For information about The Linux Programming Interface, please
visit http://man7.org/tlpi/.

http://man7.org/
http://man7.org/training/
http://man7.org/tlpi/

This page intentionally blank

This page intentionally blank

Short table of contents

1 Course Introduction 1-1
2 Classical Privileged Programs 2-1
3 Capabilities 3-1
4 Namespaces 4-1
5 Namespaces APlIs 5-1
6 User Namespaces 6-1
7 User Namespaces and Capabilities 7-1
8 Cgroups: Introduction 8-1
9 Cgroups: Other Controllers 9-1
10 Wrapup 10-1

This page intentionally blank

This page intentionally blank

This page intentionally blank

Detailed table of contents

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 System/software requirements 1-7
1.3 Course materials and resources 1-10
1.4 Common abbreviations 1-13
1.5 Introductions 1-15
2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3
2.2 Saved set-user-ID and saved set-group-1D 2-11
2.3 Changing process credentials 2-17
2.4 A few guidelines for writing privileged programs 2-20
3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-34
3.9 Capabilities and UID transitions 3-37
3.10 Exercises 3-40
Detailed table of contents
4 Namespaces 4-1
4.1 Overview 4-3
4.2 An example: UTS namespaces 4-5
4.3 Namespaces commands 4-9
4.4 Namespaces demonstration (UTS namespaces) 4-14
4.5 Namespace types and APls 4-18
4.6 Mount namespaces 4-24
4.7 PID namespaces 4-31
5 Namespaces APlIs 5-1
5.1 API Overview 5-3
5.2 Creating a child process in new namespaces: clone() 5-5
6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3
6.2 Creating and joining a user namespace 6-6
6.3 User namespaces: UID and GID mappings 6-14
6.4 Exercises 6-27
6.5 Combining user namespaces with other namespaces 6-30
7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities 7-3

7.2 Exercises

7-11

Detailed table of contents

7.3 What does it mean to be superuser in a namespace?
7.4 Homework exercises

8 Cgroups: Introduction

8.1 Preamble

8.2 What are control groups?

8.3 An example: the pids controller

8.4 Creating, destroying, and populating a cgroup
8.5 Exercises

8.6 Enabling and disabling controllers

8.7 Exercises

9 Cgroups: Other Controllers
9.1 Overview

9.2 The cpu controller

9.3 The freezer controller
9.4 Exercises

10 Werapup
10.1 Wrapup

7-14
7-23

8-1
8-3
8-6
8-12
8-16
8-23
8-28
8-41

9-1
9-7

9-16
9-18

10-1
10-3

This page intentionally blank
But, here's a tech talk you might enjoy:

Simplicity: Not Just for Beginners
Kate Gregory, NDC TechTown 2018

https://www.youtube.com/watch?v=Ic2y6w381MPA

https://www.youtube.com/watch?v=Ic2y6w8lMPA

Linux Security and Isolation APIs Essentials

Course Introduction

Michael Kerrisk,

mtk@man7.org

man7.org © 2025

October 2025

Outline

1 Course Introduction

1.1 Course overview

1.2 System/software requirements
1.3 Course materials and resources
1.4 Common abbreviations

1.5 Introductions

1-1
1-3
1-7
1-10
1-13
1-15

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3

Course prerequisites

@ Prerequisites
o (Good) reading knowledge of C

e Can log in to Linux / UNIX and use basic commands

@ Knowledge of make(1) is helpful

e (Can do a short tutorial during first practical session for
those new to make)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-4 §1.1

Course goals

@ Understanding kernel mechanisms related to security and
isolation:

e Set-UID and set-GID programs
o Capabilities

Namespaces

Cgroups (control groups)

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-5 §1.1

Lab sessions

@ Lots of lab sessions...

e Pair/group work is strongly encouraged!
e Usually gets us through practical sessions faster
@ —> SO we can cover more tOpiCS

@ Read each exercise thoroughly before starting
e = exercise descriptions often include important hints

@ Lab sessions are not instructor down time...
e = One-on-one questions about course material or exercises

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-6 §1.1

Outline

1 Course Introduction 1-1

1.2 System/software requirements 1-7

System /software requirements: kernel

@ Kernel configuration; following should be "y" or "m"

CONFIG_AUDIT
CONFIG_CGROUPS
CONFIG_USER_NS
CONFIG_SECCOMP
CONFIG_SECCOMP_FILTER
CONFIG_VETH

@ To see what options were used to build the running kernel:

$ cat /proc/config.gz # (if it is present)
$ cat /lib/modules/$(uname -r)/build/.config

e On Debian derivatives:

$ cat /boot/config-$(uname -r)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-8 §1.2

System /software requirements: packages to install

gcc (or your preferred C compiler)
make

libseccomp-dev/el]

libcap-devfel]

libacll-dev / libacl-devel
libcrypt-dev / libxcrypt-devel
util-linux

libcap-ng-utils

libreadline-dev / readline-devel

sudo (and ensure that your login has sudo access)

@ See sudo(8), visudo(8); you will need to be in the wheel (or
possibly, sudo) group

@ inotify-tools

@ golang (useful for a few code examples)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-9 §1.2
Outline
1 Course Introduction 1-1

1.3 Course materials and resources 1-10

Course materials

@ Slides / course book

@ Source code tarball
e Location sent by email

e Unpacked source code is a Git repository; you can
commit/revert changes, etc.

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-11 §1.3

Other resources

@ Manual pages
e Section 2: system calls

Section 3: library functions

Section 7: overviews

Latest version online at
http://man7.org/linux/man-pages/

Latest tarball downloadable at
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Course Introduction 1-12 §1.3

http://man7.org/linux/man-pages/
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/

Outline

1 Course Introduction 1-1

1.4 Common abbreviations 1-13

Common abbreviations used in slides

The following abbreviations are sometimes used in the slides:

@ CWD: current working directory @ IPC: interprocess
@ EA: extended attribute communication
@ FD: file descriptor @ NS: namespace
@ FS: filesystem @ PID: process ID
@ FTM: feature test macro ® PPID: parent process ID
@ GID: group ID @ UID: user ID

e rGID, eGID, sGID e rUID, eUID, sUID

(real, effective, saved set-) (real, effective, saved set-)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-14 §1.4

Outline

1 Course Introduction

1.5 Introductions

1-1

1-15

Introductions: me

@ Programmer, trainer, writer
@ UNIX since 1987, Linux since mid-1990s

@ Active contributor to Linux

e API review, testing, and documentation
@ API design and design review

e Lots of testing, lots of bug reports, a few kernel patches

o Maintainer of Linux man-pages project (2004-2021)
@ Documents kernel-user-space + C library APls

@ Contributor since 2000
@ As maintainer: ~23k commits, 196 releases

@ Author/coauthor of ~440 manual pages

@ Kiwi in .de

org

o (mtk@man7.org, PGP: 4096R/3A35CES5E)
e http://linkedin.com/in/mkerrisk

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction

1-16 §15

http://linkedin.com/in/mkerrisk

Introductions: you

In brief:
@ Who are you?

e If virtual: where are you?

@ Two interesting things about you / things you like to do
when you are not in front of a keyboard

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-17 §1.5

Questions policy

@ General policy: ask questions any time, in one of the
following ways:

e On Slack

e If online, click the “Raise hand” button
@ [|'ll usually see it, and | get to see your name as well

e Or out loud
e But, wait for a quiet point

e And if online, please announce your name, since | might not
be able to see you

@ In the event that questions slow us down too much, | may
say: “batch your questions until next Question penguin slide”

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Course Introduction 1-18 §1.5

This page intentionally blank

This page intentionally blank

Linux Security and Isolation APIs Essentials

Classical Privileged Programs

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline

2 Classical Privileged Programs

2.1 A simple set-user-ID program

2.2 Saved set-user-ID and saved set-group-ID

2.3 Changing process credentials

2.4 A few guidelines for writing privileged programs

2-1
2-3
2-11
2-17
2-20

Outline

2 Classical Privileged Programs 2-1
2.1 A simple set-user-ID program 2-3

Process credentials (real and effective)

@ Processes have credentials (user and group IDs), including:
o Real user ID (rUID) and real group ID (rGID)

@ Tell us who process belongs to
e Login shell gets these IDs from /etc/passwd

e Can be retrieved using getuid() and getgid()
o Effective user ID (eUID) and effective group ID (eGID)

e Used (along with supplementary GIDs) for permission
checking (e.g., file access)

e Can be retrieved using geteuid() and getegid()
o Credentials are inherited by child of fork()

@ For many processes, effective credentials are same as
corresponding real credentials

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 24 §21

Set-user-ID and set-group-ID programs

@ Set-user-1D (set-group-ID) program is classical UNIX
privilege-granting mechanism:
o Gives process privileges of different user (group)

o Achieved by changing process effective UID (GID)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs

25 §2.1

Set-UID example (privprogs/simple_setuid.c)

int main(int argc, char *argv[]) {
printf ("rUID = %1d, eUID = %ld\n",

(long) getuid(), (long) geteuid());

if (argec > 1) {
int fd = open(argv([1], 0 RDONLY);
if (fd >= 0)
printf ("Successfully opened %s\n", argv[1]);
else
perror("Open failed");

}

exit (EXIT_SUCCESS);

@ Print process real and effective UID

@ If argument was supplied, try to open that file

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs

26 §2.1

Set-UID example (privprogs/simple_setuid.c)

@ Run program as unprivileged user, attempting to open
/etc/shadow:

$ id

1uid=1000(mtk) gid=1000(mtk) ...
$./simple_setuid /etc/shadow
rUID = 1000, eUID = 1000

Open failed: Permission denied

@ Real and effective UID have same value
e Unprivileged UID 1000

@ open() fails; unprivileged user can't open /etc/shadow

$ 1s -1 /etc/shadow
—————————— . 1 root root 1450 Jan 3 14:17 /etc/shadow

e On other systems, permissions may differ, but on every
system, /etc/shadow is not publicly readable

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-7 §21

Creating a set-UID program

@ When executed, a set-UID (set-GID) program changes eUID
(eGID) of process to be same as UID (GID) of executable

e Technique used by several common system programs:
passwd(1), mount(8), su(1)
@ To create set-UID (set-GID) program:
o Ensure executable is owned by desired UID (GID)

e Turn on set-UID (set-GID) mode bit of executable
@ chmod u+s (chmod g+s)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-8 §2.1

Set-UID example (privprogs/simple_setuid.c)

@ Let's make our program set-UID-root:

$ sudo chown root simple_setuid
$ sudo chmod u+s simple_setuid

@ /s shows that this is a set-UID program:

$ 1s -1 simple_setuid
-rwsr-xr-x. 1 root mtk 27592 Jan 11 20:46 simple_setuid

e “s” in user-execute permission == program is set-UID

@ Again run program, attempting to open /etc/shadow:

$./simple_setuid /etc/shadow
rUID = 1000, eUID = 0
Successfully opened /etc/shadow

e Process eUID was changed to be same as UID of executable

e File was successfully opened

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 29 §21

Privilege

@ A set-UID (set-GID) program gives process the “privileges” of
a different user (group)
e Could be privileges of another “normal” user (or group)
e So, e.g., can access files owned by that user (or group)
@ A set-UID-root program gives process privileges of root
e Powerful

e And dangerous!
e Many pitfalls (especially in C)

e See TLPI Ch. 38; Bishop, M. (2018) Computer Security: Art
and Science, 2e; and other sources listed in TLPI §38.12

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-10 §2.1

Outline

2 Classical Privileged Programs 2-1

2.2 Saved set-user-ID and saved set-group-1D 2-11

Saved set-user-ID and saved set-group-ID

@ Each process has two more credentials:
saved set-user-ID (sUID) and saved set-group-ID (sGID)

o Designed for use with set-UID /set-GID programs
e Can be retrieved using:
getresuid(&ruid, &euid, &suid)
getresgid(&rgid, &egid, &sgid)
@ APIs return real, effective, and saved set IDs

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-12 §2.2

Saved set-user-ID and saved set-group-ID

@ Kernel does the following when execing a program

(execve()):
@ Set-UID bit enabled on executable?
= process effective UID is made same as file UID

@ Set-GID bit enabled on executable?
= process effective GID is made same as file GID
© Effective IDs are copied to corresponding saved set IDs
o (Done regardless of whether set-UID or set-GID bit is set)

@ IOW: saved set IDs record state of effective IDs at program
start up

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-13 §2.2

Saved set-user-ID and saved set-group-ID

@ When set-UID program is executed, credentials look like this:

Real UID Effective UID Saved set-user-ID
(unchanged by exec()) (copied from (copied from eff. UID
file owner) at program start-up)
Unprivileged ID Privileged ID Privileged ID

@ A process can switch its effective UID back and forth
between real UID and saved set-user-ID

e i.e., between unprivileged and privileged states
@ Analogously for set-GID programs and saved set-group-ID

@ What is the design mistake in initial set-up of process UIDs
in above picture?

o In other words: what is the first thing that a set-UID /
set-GID program should do on start-up?

o (Reset effective UID to same value as real UID)

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-14 §2.2

privprogs/sleep launch.c

int main(int argc, char *argv[]) {
printf("%s: PID = %1ld\n", argv[0], (long) getpid());

if (argec > 1)
sleep(atoi(argv[1]));

if (arge > 2) {
printf ("About to execvp()\n");
execvp(argv([2], &argv([2]);
errExit ("execvp");

./sleep_launch [<sleep-secs> [<prog> arg...]]

@ Display PID
@ Sleep for specified number of seconds

@ Execute specified program (with arguments)

o If prog is set-UID, we'll see UIDs change at moment of exec

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-15 §2.2

Demo

@ Take a copy of sleep(1), and make it a set-UID program:

$ id

uid=1000(mtk) gid=1000 (mtk)
$ cp /bin/sleep mysleep

$ sudo chown 2000 mysleep
$ sudo chmod ut+s mysleep

@ In one terminal window:

$ watch -n 1 ps -o 'pid,ruid,euid,suid,comm' \
-C sleep_launch,mysleep

@ In another terminal window:

$./sleep_launch 10 ./mysleep 60

@ Other demos possible using privprogs/demo_setuid.c

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-16 §2.2

Outline

2 Classical Privileged Programs 2-1

2.3 Changing process credentials 2-17

Changing process credentials

General principle for all APIs that change credentials:

@ Privileged processes can make any changes to IDs
e Privileged process &~ process effective user ID 0

@ More precisely: process has appropriate Linux capability
(CAP_SETUID for UID changes, CAP_SETGID for GID changes)

@ Unprivileged processes can change an ID to same value as
another of its current IDs
o e.g., unprivileged seteuid() can change effective UID to same
value as real or saved set UID

[TLPI §9.7]

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-18 §2.3

Changing process credentials

@ setresuid(ruid, euid, suid): change real, effective,
and saved set UIDs

e —1 means “no change” in corresponding UID

@ setresgid(rgid, egid, sgid): change real, effective,
and saved set GIDs

e —1 means “no change” in corresponding GID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-19 §23
Outline
2 Classical Privileged Programs 2-1

2.4 A few guidelines for writing privileged programs 2-20

Operate with least privilege

@ Generally best to hold (elevated) privilege only when required
e “Principle of least privilege”

e If program is compromised while in lower privilege state, this
makes attacker’s life harder

@ Lower privilege when not needed, and raise temporarily as

required

e i.e., switch effective ID back and forth between real and

saved set ID

@ If privilege will never again be needed, drop it permanently

e i.e., set effective and saved set |IDs to same value as real |ID

Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-21 §24
Dropping and raising privileges
@ Drop and raise privileges:
euid = geteuid(); /* Save copy of eUID %/
setresuid(-1, getuid(), -1); /* Drop (switch to rUID) */
setresuid(-1, euid, -1); /* Raise (restore eUID)*/
/* Do privileged work */
setresuid(-1, getuid(), -1); /* Drop (switch to rUID) */
@ Irrevocably drop privileges:
setresuid(-1, getuid(), getuid());
Security and Isolation APIs Essentials ©2025 M. Kerrisk Classical Privileged Programs 2-22 8§24

This page intentionally blank

This page intentionally blank
But, here's a tech talk you might enjoy:

The Tragedy of systemd
Benno Rice, linux.conf.au, 2019

(A very amusing talk that is not about knocking systemd)

https://www.youtube.com/watch?v=o0_AIw9bGogo

https://www.youtube.com/watch?v=o_AIw9bGogo

Linux Security and Isolation APIs Essentials

Capabilities

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline
3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-7
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-22
3.6 Text-form capabilities 3-28
3.7 Exercises 3-31
3.8 Capabilities and execve() 3-34
3.9 Capabilities and UID transitions 3-37
3.10 Exercises 3-40

Outline

3 Capabilities
3.1 Overview

3-3

Rationale for capabilities

@ Traditional UNIX privilege model divides users into two

groups:

e Normal users, subject to privilege checking based on UID and

GIDs

o Effective UID 0 (superuser) bypasses many of those checks

@ Coarse granularity is a problem:

e E.g., to give a process power to change system time, we
must also give it power to bypass file permission checks

@ = No limit on possible damage if program is compromised

.org

[TLPI §39.1]

Security and Isolation APIs Essentials ©2025 M. Kerrisk

Capabilities

34 §3.1

Rationale for capabilities

@ Capabilities divide power of superuser into small pieces
e 41 capabilities, as at Linux 6.16

e Traditional superuser == process that has full set of
capabilities

@ Goal: replace set-UID-root programs with programs that
have capabilities

e Compromise in set-UID-root binary = very dangerous

e Compromise in binary with file capabilities = less dangerous

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-5 §31

A selection of Linux capabilities

Capability Permits process to

CAP_CHOWN Make arbitrary changes to file UIDs and GIDs
CAP_DAC_QOVERRIDE Bypass file RWX permission checks
CAP_DAC_READ_SEARCH | Bypass file R and directory X permission checks
CAP_IPC_LOCK Lock memory

CAP_FOWNER chmod(), utime(), set ACLs on arbitrary files
CAP_KILL Send signals to arbitrary processes
CAP_NET_ADMIN Various network-related operations
CAP_SETFCAP Set file capabilities

CAP_SETGID Make arbitrary changes to process’s (own) GIDs
CAP_SETPCAP Make changes to process's (own) capabilities
CAP_SETUID Make arbitrary changes to process’s (own) UIDs
CAP_SYS_ADMIN Perform a wide range of system admin tasks
CAP_SYS _BOOT Reboot the system

CAP_SYS_NICE Change process priority and scheduling policy
CAP_SYS_MODULE Load and unload kernel modules

CAP_SYS RESOURCE Raise process resource limits, override some limits
CAP_SYS_TIME Modify the system clock

More details: capabilities(7) manual page and TLPI §39.2

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-6 §3.1

Outline
3 Capabilities 3-1

3.2 Process and file capabilities 3-7

Process and file capabilities

@ Processes and (binary) files can each have capabilities

@ Process capabilities define power of process to do
privileged operations
e Traditional superuser == process that has all capabilities

@ File capabilities are a mechanism to give a process
capabilities when it execs the file
e Stored in security.capability extended attribute
o (File metadata; getfattr -m - <file>)

[TLPI §39.3]

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Capabilities 3-8 §3.2

Process and file capability sets

@ Capability set: bit mask representing a group of capabilities

e Each process' has 3* capability sets:
Permitted

Effective

Inheritable

TIn truth, capabilities are a per-thread attribute
tIn truth, there are more capability sets

@ An executable file may have 3 associated capability sets:
e Permitted

o Effective

e Inheritable

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-9 §32

Inheritable and ambient capabilities

@ As a simplification, we will largely ignore certain
capability sets:
e Process and file inheritable sets
e A feature misdesign that turned out not to be useful

e Commonly, these sets are empty (i.e., all zeros)

e Process ambient set
e Designed for a particular (less common) use case

@ (Serves a use case that couldn’t be solved by inheritable set)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-10 §3.2

Viewing process capabilities

@ /proc/PID/status fields (hexadecimal bit masks):
$ cat /proc/4091/status

CapInh: 0000000000000000
CapPrm: 0000000000200020
CapEff: 0000000000000000

e See <sys/capability.h> for capability bit numbers
o Here: CAP_KILL (bit 5), CAP_SYS_ADMIN (bit 21)

o getpcaps(1) (part of libcap package):

$ getpcaps 4091
Capabilities for "4091': = cap_kill,cap_sys_admin+p

e More readable notation, but a little tricky to interpret
e Here, single '=" means all sets are empty

@ capsh(1) can be used to decode hex masks:

$ capsh --decode=200020
0x0000000000200020=cap_kill,cap_sys_admin

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-11 §3.2

Modifying process capabilities

@ A process can modify its capability sets by:
o Raising a capability (adding it to set)
e Synonyms: add, enable
o Lowering a capability (removing it from set)
e Synonyms: drop, clear, remove, disable

o (APIs for changing process capabilities are capset(2),
prctl(2), and libcap library; we won't look at these)

@ There are various rules about changes a process can make to
its capability sets

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Capabilities 3-12 §3.2

Outline

3 Capabilities 3-1

3.3 Permitted and effective capabilities 3-13

Process permitted and effective capabilities

@ Permitted : capabilities that process may employ
e “Upper bound” on effective capability set

e Once dropped from permitted set, a capability can’'t be
reacquired

o (But see discussion of execve() later)
e Can't drop while capability is also in effective set

@ Effective: capabilities that are currently in effect for process

e l.e., capabilities that are examined when checking if a process
can perform a privileged operation

e Capabilities can be dropped from effective set and reacquired
@ Operate with least privilege....

@ Reacquisition possible only if capability is in permitted set

[TLPI §39.3.3]

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-14 8§33

File permitted and effective capabilities

@ Permitted : a set of capabilities that may be added to
process’s permitted set during exec()

@ Effective: /\ a single bit that determines state of process'’s
new effective set after exec():
e If set, all capabilities in process’'s new permitted set are also
enabled in effective set

e If not set, process's new effective set is empty

@ File capabilities allow implementation of capabilities analog
of set-UID-root program

e Notable difference: setting effective bit off allows a program
to start in unprivileged state

o Set-UID/set-GID programs always start in privileged state

[TLPI §39.3.4]
Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-15 §3.3
Outline
3 Capabilities 3-1

3.4 Setting and viewing file capabilities 3-16

Setting and viewing file capabilities from the shell

@ setcap(8) sets capabilities on files
o Requires privilege (CAP_SETFCAP — “set file capabilities”)

e E.g., to set CAP_SYS_TIME as a permitted and effective
capability on an executable file:

$ cp /bin/date mydate
$ sudo setcap "cap_sys_time=pe" mydate

@ getcap(8) displays capabilities associated with a file

$ getcap mydate
mydate = cap_sys_time+ep

o filecap(8) searches for files that have capabilities:

$ filecap # Report files in $PATH
$ sudo filecap -a 2> /dev/null # Check all files on system
"2>" to discard "not supported" messages

e filecap is part of the libcap-ng-utils package
[TLPI §39.3.6]

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-17 8§34

cap/demo _file caps.c

int main(int argc, char *argv[]) {
cap_t caps = cap _get proc(); /* Fetch process capabilities */
char *str = cap_to_text(caps, NULL);
printf ("Capabilities: %s\n", str);

if (argec > 1) {
fd = open(argv([1], O _RDONLY);
if (£d >= 0)
printf ("Successfully opened %s\n", argv[1]);
else
printf ("Open failed: %s\n", strerror(errno));

}
exit (EXIT_SUCCESS) ;

@ Display process capabilities

@ Report result of opening file named in argv/[1] (if present)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-18 §3.4

cap/demo_file caps.c

$ id —u

1000

$ cc -o demo_file_caps demo_file_caps.c -lcap

$./demo_file_caps /etc/shadow

Capabilities: =

Open failed: Permission denied

$ 1s -1 /etc/shadow

—————————— . 1 root root 1974 Mar 15 08:09 /etc/shadow

@ All steps in demos are done from unprivileged user ID 1000

@ Binary has no capabilities = process gains no capabilities

e "“="in the output means “all capability sets empty”

@ open() of /etc/shadow fails
e Because /etc/shadow is readable only by privileged process

e Process needs CAP_DAC_READ_SEARCH capability

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-19 §34

cap/demo _file caps.c

$ sudo setcap cap_dac_read_search=p demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+p

Open failed: Permission denied

@ Binary confers permitted capability to process, but capability
is not effective

@ Process gains capability in permitted set

@ open() of /etc/shadow fails
o Because CAP_DAC_READ SEARCH is not in effective set

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-20 §3.4

cap/demo_file caps.c

$ sudo setcap cap_dac_read_search=pe demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+ep
Successfully opened /etc/shadow

@ Binary confers permitted capability and has effective bit on
@ Process gains capability in permitted and effective sets

@ open() of /etc/shadow succeeds

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-21 §34
Outline
3 Capabilities 3-1

3.5 Exercises 3-22

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions

@ Zoom has an “Ask for help” button...

o Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-23 §35

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the

font size with Control+4Shift+"+" and Control+"-
@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
o Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4Shift+:

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-24 8§35

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: :

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-25 §35

Exercises

o Compile and run the cap/demo_file_caps program, without adding any capabilities
to the file, and verify that when you run the binary, the process has no capabilities:

$ cc -o demo_file_caps demo_file_caps.c -lcap
$./demo_file_caps

@ The string “=" means all capability sets empty.
g Now make the binary set-UID-root:

$ sudo chown root demo_file_caps # Change owner to root
$ sudo chmod u+s demo_file_caps # Turn on set-UID bit
$ 1s -1 demo_file_caps # Verify

-rwsr-xr-x. 1 root mtk 8624 Oct 1 13:19 demo_file_caps

Q Run the binary and verify that the process gains all capabilities. (The string “=ep
means “all capabilities in the permitted + effective sets”.)

@ If the process does not gain all capabilities, check whether the filesystem is
mounted with the nosuid option (findmnt -T <dir>). If it is, either remount
the filesystem without that option or do the exercise on a filesystem that is not
mounted with nosuid (typically, /tmp should work).

0 Take the existing set-UID-root binary, add a permitted capability to it, and set the
effective capability bit:

$ sudo setcap cap_dac_read_search=pe demo_file_caps

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-26 §3.5

Exercises

e When you now run the binary, what capabilities does the process have?

$./demo_file_caps

e Suppose you assign empty capability sets to the binary. When you execute the
binary, what capabilities does the process then have?

$ sudo setcap = demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

0 Use the following command to remove capabilities from the binary and verify that
when executed, the binary once more grants all capabilities to the process:

$ sudo setcap -r demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

© Use the following command to find the binaries on your system that have capabilities
attached:

$ sudo filecap -a 2> /dev/null

Write the name of your distribution, and paste the list of binaries into the Slack
channel.

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-27 §35

Outline
3 Capabilities 3-1

3.6 Text-form capabilities 3-28

Textual representation of capabilities

@ Both setcap(8) and getcap(8) work with textual
representations of capabilities

o Syntax described in cap_from_text(3) manual page

@ String read left to right, containing space-separated clauses
o (The capability sets are initially considered to be empty)
o Clause: caps-list operator flags [operator flags] ...
e caps-list is comma-separated list of capability names, or all
@ operatoris +, -, or =
o flags is zero or more of p (permitted), e (effective), or
i (inheritable)
o Clause can contain multiple [operator flags] parts:

e E.g., "cap_sys_time+p-i" (is same as
"cap_sys_time+p cap_sys_time-i")

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-29 §3.6

Textual representation of capabilities

Operators:

@ + operator: raise capabilities in sets specified by flags

@ - operator: lower capabilities in sets specified by flags

@ = operator:

e Raise capabilities in sets specified by flags;
lower those capabilities in remaining sets

e So, "CAP_KILL=p" is same as "CAP_KILL+p-ie"
e caps-list can be omitted; defaults to all

e flags can be omitted = clear capabilities from all sets
= Thus: "=" means clear all capabilities in all sets

@ What does "=p cap kill,cap_sys_admin+e" mean?
o All capabilities in permitted set, plus CAP_KILL and
CAP_SYS ADMIN in effective set

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-30 §3.6

Outline

3 Capabilities 3-1

3.7 Exercises 3-31

Exercises

0 What capability bits are enabled by each of the following text-form capability
specifications?

@ "=p"

@ "="

@ '"cap_setuid=p cap_sys_time+pie"
@ "=p cap_kill-p"

@ '"cap_kill=p = cap_sys_admin+pe"

@ '"cap_chown=i cap_kill=pe cap_setfcap,cap_chown=p"

e The program cap/cap_text.c takes a single command-line argument, which is a
text-form capability string. It converts that string to an in-memory representation
and then iterates through the set of all capabilities, printing out the state of each
capability within the permitted, effective, and inheritable sets. It thus provides a
method of verifying your interpretation of text-form capability strings. Try supplying
each of the above strings as an argument to the program (remember to enclose the
entire string in quotes!) and check the results against your answers to the previous
exercise.

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-32 §3.7

Exercises

e The pscap command (part of libcap-ng) displays a list of the processes on the

system that have permitted, effective, or inheritable capabilities. In addition to
showing the PPID, PID, UID, command, and capabilities for each of the displayed

processes, output lines may be annotated with one of the following characters:
@ +: the process has a nonempty capability bounding set
@ 0©: the process has a nonempty ambient capability set (later)

@ *: the process is in a child user namespace (later)

Use the pscap command to display the processes that have capabilities on you
system. (By default, PID 1 (init) is excluded from the list; use the —a option t
include PID 1, if you wish.)

.org

r
(0]

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities

333 §3.7

Outline

3 Capabilities

3.8 Capabilities and execve()

3-1

3-34

Transformation of process capabilities during exec

@ During execve(), process's capabilities are transformed:

P'(perm) = F(perm) & P(bset)

P'(eff) = F(eff) ? P'(perm) : O

o P()/ P’(): process capability set before/after exec
o F(): file capability set (of file that is is being execed)

@ New permitted set for process comes from file permitted set
ANDed with capability bounding set (bset)

o /\ Note that P(perm) has no effect on P’(perm)
@ New effective set is either 0 or same as new permitted set

e /\ Transformation rules above are a simplification that
ignores process+file inheritable sets and process ambient set

o In most cases, those sets are empty (i.e., 0)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-35 §3.8

Transformation of process capabilities during exec

@ Commonly, process bounding set contains all capabilities

e Removing capabilities from bounding set provides a way to
limit capabilities that process gains during execve()

e (We won't go into further detail on bounding set)

@ Therefore transformation rule for process permitted set:

P’ (perm) = F(perm) & P(bset)

commonly simplifies to:

P’ (perm) = F(perm)

[TLPI §39.5]

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-36 §3.8

Outline

3 Capabilities 3-1

3.9 Capabilities and UID transitions 3-37

Capabilities and UID transitions

@ Various system calls change process credentials, subject to
rules:
o If process has CAP_SETUID (CAP_SETGID), arbitrary changes
can be made to UIDs (GIDs)
e Otherwise, can change ID only to value of another ID in
same category

e E.g., effective UID can be made same as real UID or saved
set-UID

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Capabilities 3-38 §3.9

Capabilities and UID transitions

@ What is effect on process capabilities for transitions to/from
UID 07

o If rUID, eUID, or sUID was zero, and set*uid() renders them
all nonzero:

@ Permitted, effective, and ambient sets are cleared
e If eUID changes from zero to nonzero value:
e Effective capability set is cleared

e If eUID changes from nonzero value to 0:
o Permitted set is copied to effective set

o (Transition possible even if CAP_SETUID is not in process'’s
effective set, so long as either rUID or sUID is 0)

@ This behavior maps traditional privilege semantics of
set-UID-root programs onto capabilities model

[TLPI §39.6]
Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-39 §3.9
Outline
3 Capabilities 3-1

3.10 Exercises 3-40

Exercises

The cap/setuid_root_cap_dumb.c program can be used to verify the
effect of UID transitions on process capabilities. This program uses various
set*uid() calls to change the process’'s UIDs between zero and nonzero
values, and prints out the state of the process’s capabilities after each step.

@ Read the code of the main() function to understand what the program
is doing (ignore the use of a command-line argument that triggers the
use of SECBIT_NO_SETUID_FIXUP), and then compile it:

$ 'PS].='$ 1
$ cc -o setuid_root_cap_dumb setuid_root_cap_dumb.c -lcap # Or use make(1)

@ Make the program set-UID-root; assign a file permitted capability and
enable the file effective capability bit:

$ sudo chown root setuid_root_cap_dumb
$ sudo chmod u+s setuid_root_cap_dumb # Turn on set-UID bit
$ sudo setcap cap_setpcap=pe setuid_root_cap_dumb

© Run the program and explain the results:

$./setuid_root_cap_dumb

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Capabilities 3-41 §3.10

This page intentionally blank

This page intentionally blank

Linux Security and Isolation APIs Essentials

Namespaces

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline

4 Namespaces

4.1 Overview

4.2 An example: UTS namespaces

4.3 Namespaces commands

4.4 Namespaces demonstration (UTS namespaces)
4.5 Namespace types and APls

4.6 Mount namespaces

4.7 PID namespaces

4-1
43
45

4-14
4-18
4-24
4-31

Outline

4 Namespaces 4-1
4.1 Overview 4-3
Namespaces

@ A namespace (NS) “wraps” some global system resource to
provide resource isolation
@ Linux supports multiple NS types
e UTS, mount, network, ..., each governing different resources
@ For each NS type:

e Multiple instances of NS may exist on a system

@ At system boot, there is one instance of each NS type—the
so-called initial namespace instance

e Each process resides in one NS instance

e To processes inside NS instance, it appears that only they
can see/modify corresponding global resource

@ Processes are unaware of other instances of resource

@ When new process is created via fork(), it resides in same set
of NSs as parent

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-4 §4.1

Outline

4 Namespaces 4-1

4.2 An example: UTS namespaces 4-5

UTS namespaces

@ UTS NSs are simple, and so provide an easy example

@ Isolate two system identifiers returned by uname(2)
e nodename: system hostname (set by sethostname(2))

o domainname: NIS domain name (set by setdomainname(2))

@ E.g., various reasons why it can be useful for a container to
have (unique) hostname

e Hostname might be recorded in internal DNS or used as part
of log messages

e Clustering systems identify nodes by hostname

@ “UTS” comes from struct utsname argument of uname(2)
e Structure name derives from “UNIX Timesharing System”

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-6 §4.2

UTS namespaces

@ Running system may have multiple UTS NS instances

@ Processes within single instance access (get/set) same
nodename and domainname

@ Each NS instance has its own nodename and domainname

e Changes to nodename and domainname in one NS instance
are invisible to other instances

.org

Security and Isolation APls Essentials ©2025 M. Kerrisk Namespaces 4-7 §4.2

UTS namespace instances

Initial UTS NS
‘ hostname: bienne ‘

O O

O
O O
UTS NS X
‘ hostname: tekapo ‘
UTSNSY
Q Q ‘ hostname: pukaki ‘
O O O

O 0O

Each UTS NS contains a set of processes (the circles) which
see/modify same hostname (and domain name, not shown)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-8 §4.2

Outline

4 Namespaces

4.3 Namespaces commands

4-1

4-9

Some “magic” symlinks

@ Each process has some symlink files in /proc/PID/ns

/proc/PID/ns/cgroup #
/proc/PID/ns/ipc #
/proc/PID/ns/mnt #
/proc/PID/ns/net #
/proc/PID/ns/pid #
/proc/PID/ns/time #
/proc/PID/ns/user #
/proc/PID/ns/uts #

Cgroup NS instance
IPC NS instance
Mount NS instance
Network NS instance
PID NS instance
Time NS instance
User NS instance
UTS NS instance

e One symlink for each of the NS types

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces

4-10 §4.3

Some “magic” symlinks

@ Target of symlink tells us which NS instance process is in:

$ readlink /proc/$$/ns/uts
uts: [4026531838]

e Content has form: ns-type : [magic-inode-#]
e (inode-# comes from internally mounted NS filesystem)
@ Various uses for these symlinks, including:

o If processes show same symlink target, they are in same
NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-11 §4.3

The unshare(1) and nsenter(1) commands

There are shell commands for working with namespaces...

@ unshare(1) creates new NSs and executes a command in
those NSs:

unshare [options] [command [arg...]]

e command defaults to sh

@ nsenter(1) steps into already existing NS(s) and executes a
command:

nsenter [options] [command [arg...]]

e command defaults to sh

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-12 §4.3

The unshare(1) and nsenter(1) commands

unshare(1) and nsenter(1) have options for specifying NS types:

unshare [options] [command [arguments]]

-C Create new cgroup NS
-i Create new IPC NS

-m Create new mount NS
-n Create new network NS
-p Create new PID NS

-T Create new time NS

-u Create new UTS NS

-U Create new user NS

nsenter [options] [command [arguments]]
-t PID PID of process whose NSs should be entered

-C Enter cgroup NS of target process

-i Enter IPC NS of target process

-m Enter mount NS of target process

-n Enter network NS of target process

-p Enter PID NS of target process

-T Enter time NS of target process

-u Enter UTS NS of target process

-U Enter user NS of target process

-a Enter all NSs of target process

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-13 §4.3
Outline
4 Namespaces 4-1

4.4 Namespaces demonstration (UTS namespaces) 4-14

Demo

@ Start two terminal windows (shl, sh2) in initial UTS NS

sh1$ hostname # Show hostname in initial UTS NS
bienne

sh2$ hostname
bienne

@ In sh2, create new UTS NS, and change hostname

$ SUDO_PS1='sh2# ' sudo unshare -u bash --norc
sh2# hostname langwied # Change hostname
sh2# hostname # Verify change
langwied

e sudo(8) because we need privilege (CAP_SYS_ADMIN) to
create a UTS NS

@ We set SUDO_PS1 so shell has a distinctive prompt. Setting this
environment variable causes sudo(8) to set PS1 for the command that it
executes. (PS1 defines the prompt displayed by the shell.) The
bash --norc option prevents the execution of shell start-up scripts that
might modify PS1.

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-15 §4.4

Demo

@ In shl, verify that hostname is unchanged:

sh1$ hostname
bienne

@ Compare /proc/PID/ns/uts symlinks in two shells

sh1$ readlink /proc/$$/ns/uts
uts: [4026531838]

sh2# readlink /proc/$$/ns/uts
uts: [4026532855]

e The two shells are in different UTS NSs

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-16 §4.4

Demo

@ Discover the PID of sh2:

sh2# echo $$
5912

@ From shl, use nsenter(1) to create a new shell that is in
same NS as sh2:

sh1$ SUDO_PS1='sh3# ' sudo nsenter -t 5912 -u
sh3# hostname

langwied

sh3# readlink /proc/$$/ns/uts

uts: [4026532855]

e Comparing the symlink values, we can see that this shell
(sh3#) is in the second (sh2#) UTS NS

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-17 §4.4
Outline
4 Namespaces 4-1
4.5 Namespace types and APls 4-18

Namespace APls

@ Programs can use various system calls to work with NSs:

o clone(2): create new (child) process in new NS(s)

o unshare(2): create new NS(s) and move caller into it/them

e Used by unshare(1) command

o setns(2): move calling process to another (existing) NS

instance
e Used by nsenter(1) command

o (We revisit these APIs in detail later)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces

4-19 §4.5

The Linux namespaces

@ Linux supports following NS types:

Mount CLONE_NEWNS

UTS CLONE_NEWUTS
IPC CLONE NEWIPC
PID CLONE_NEWPID
Network CLONE NEWNET
User CLONE_NEWUSER

Cgroup CLONE NEWCGROUP
Time CLONE_NEWTIME

2002 (v2.4.19)
2006 (v2.6.19)
2006 (v2.6.19)
2008 (v2.6.24)
2009 (~v2.6.29)
2013 (v3.8)
2016 (v4.6)
2020 (v5.6)

@ Above list includes corresponding clone() flag and year +
kernel version for “milestone” release

e Upcoming: SELinux NSs?

https://1ssna2025.sched.com/event/1zam6/

selinux-all-the-way-down-namespaces-for-selinux-stephen-smalley-national-security-agency,

https://www.youtube.com/watch?v=AwzGCOwxLoM

@ Note: we won't cover all NS types in this course

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces

4-20 §4.5

https://lssna2025.sched.com/event/1zam6/selinux-all-the-way-down-namespaces-for-selinux-stephen-smalley-national-security-agency
https://lssna2025.sched.com/event/1zam6/selinux-all-the-way-down-namespaces-for-selinux-stephen-smalley-national-security-agency
https://www.youtube.com/watch?v=AwzGCOwxLoM

Privilege requirements for creating namespaces

@ Creating user NS instances requires no privileges
@ Creating instances of other (nonuser) NS types requires
privilege
o CAP_SYS_ADMIN

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-21 §45

Combining namespace types

@ It's possible to use individual NS types

o E.g., mount NSs (first NS type) were invented to solve
specific use cases

@ But, often, several NS types are combined for an application

e E.g., the use of PID, IPC, or cgroup NSs typically requires
corresponding use of mount NSs

@ Because certain filesystems are commonly mounted for PID,
IPC, and cgroup NSs

@ In container-style frameworks, most or all NS types are used
in concert

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-22 §45

Sources of further information

@ See my LWN.net article series Namespaces in operation
https://lwn.net/Articles/531114/

Many example programs and shell sessions...

Source code tarball for course includes all of that code, with
a few important updates

A few details have subsequently changed (see my
post-publication comments at end of some articles)
@ namespaces(7), user_namespaces(7), pid_namespaces(7),

mount_namespaces(7), cgroup_namespaces(7), uts_namespaces(7),
network_namespaces(7), time_namespaces(7), ipc_namespaces(7)

@ “Linux containers in 500 lines of code”
@ https://blog.lizzie.io/linux-containers-in-500-loc.html

@ (But note: uses cgroups v1)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-23 §45
Outline
4 Namespaces 4-1

4.6 Mount namespaces 4-24

https://lwn.net/Articles/531114/
https://blog.lizzie.io/linux-containers-in-500-loc.html

Mount namespaces (CLONE_NEWNS)

@ First namespace type (merged into mainline in 2002)

@ Isolation of set of mounts seen by process(es)
e A mount is a tuple that includes:
@ Mount source (e.g., device)

e Pathname (mount point)
@ |D of parent mount

@ Mount NSs allow processes to see distinct sets of mounts

o Process's view of filesystem (FS) tree is defined by
(hierarchically related) set of mounts

e = processes in different mount NSs see different FS trees

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-25 §4.6

Mount namespaces (CLONE_NEWNS)

@ Created via clone() or unshare() with CLONE_NEWNS flag

e NS == "“new namespace”: no one foresaw that there might
be further NS types...

e New NS inherits copy of mount list from NS of creating
process

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-26 §4.6

Mount Namespaces. use Cases

@ Per-process, private filesystem trees
o (See also pam_namespace(8))
@ Mount new /proc FS without side effects
e Useful when creating PID NS
o (There are analogous use cases for IPC and cgroup NSs)

@ Jailing in the manner of chroot, but more flexible and secure

e Can set process up with different root directory, and subset
of available filesystems

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-27 §4.6

Mount namespaces demo

@ In first terminal window (in initial mount NS), create a
directory to be used as root of small tree of mounts:

$ mkdir /tmp/x

@ Mount a tmpfs filesystem at that location, and create further
directories that will be used as (child) mount points:

$ sudo mount -t tmpfs none /tmp/x
$ mkdir /tmp/x/{aaa,bbb}
|

@ In a second terminal, create a new mount NS (NS 2), and
create a new mount (/tmp/x/bbb) in that NS:

$ SUDO_PS1='ns2# ' sudo unshare --mount bash --norc
ns2# mount -t tmpfs none /tmp/x/bbb

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-28 §4.6

Mount namespaces demo

@ Verify the subtree of mounts in NS 2:

ns2# findmnt -a -o target -R /tmp/x
TARGET

/tmp/x

*-/tmp/x/bbb

@ In first terminal (initial NS), create a mount (/tmp/x/aaa),
and verify that mount /tmp/x/bbb is not present:

$ sudo mount -t tmpfs none /tmp/x/aaa
$ findmnt -a -o target -R /tmp/x
TARGET

/tmp/x

“-/tmp/x/aaa

@ Show that /tmp/x/aaa mount is not present in NS 2:

$ findmnt -a -o target -R /tmp/x
TARGET
/tmp/x
*-/tmp/x/bbb
Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-29 §4.6

Shared subtrees and mount propagation

For time reasons, we will omit some important features:
@ Shared subtrees and mount propagation types
@ Allow (controlled, partial) reversal of isolation provided by
mount NSs

e IOW: initial mount NS implementation provided too much
isolation for various use cases

e Permit mount/unmount events in one mount NS to
automatically propagate to other mount NSs

e Classic example use case: mount optical disk in one NS, and
have mount appear in all NSs

@ See mount_namespaces(7)

org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Namespaces 4-30 §4.6

Outline

4 Namespaces 4-1

4.7 PID namespaces 4-31

PID namespaces (CLONE_NEWPID)

@ Isolate process ID number space
e = processes in different PID NSs can have same PID

@ Benefits:

e Allow processes inside containers to maintain same PIDs
when container is migrated to different host
@ “Container live migration”, implemented using CRIU (“Checkpoint
restore in userspace”); https:
//lisas.de/~adrian/container-live-migration-article.pdf,
https://www.youtube.com/watch?v=FwbZuRMd094
o Allows per-container init process (PID 1) that manages

container initialization and reaping of orphaned children

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-32 §4.7

https://lisas.de/~adrian/container-live-migration-article.pdf
https://lisas.de/~adrian/container-live-migration-article.pdf
https://www.youtube.com/watch?v=FwbZuRMdO94

PID namespace hierarchies

@ Unlike (most) other NS types, PID NSs form a hierarchy
e Each PID NS has a parent, going back to initial PID NS

o Parent of PID NS is PID NS of caller of clone() or unshare()

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-33 §4.7

PID namespace hierarchies

@ A process is a member of its immediate PID NS, but is also
visible in each ancestor PID NS

@ Process will (typically) have different PID in each PID NS in
which it is visible!

@ A process in initial PID NS can “see” all processes in all
PID NSs

e See == employ syscalls on, send signals to, ...

@ A processes in a lower NS won't be able to “see” any
processes that are members only of ancestor NSs

e Can see only peers in same NS + members of descendant
NSs

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-34 8§47

A PID namespace hierarchy

A process is also visible in all ancestor PID namespaces

Initial namespace

(321, (326) (513) (53 (420 (433)

T T N T T

\ | |
| \ | |

S

Child namespace

|
| |
T T
C 9 21
\ / \ /
~ - ~ ~
\ T T
Child namespace N : :

(O-(5)

Grandchild namespace

77N
(PID)
N/
| fork()
: e
PID in ancestor PID
clone()
namespace namespace CZ5I\7E_1\7E_WPID
.org
Security and Isolation APls Essentials ©2025 M. Kerrisk Namespaces 4-35 §4.7

PID namespaces and PIDs

o getpid() returns caller’s PID inside caller’'s PID NS

@ When making syscalls and using /proc in outer NSs, pro

cess

in a descendant NS is referred to by its PID in caller’s NS

@ A caller’s parent might be in a different PID NS
o getppid() returns 0!

@ Via /proc/PID/status, we can see process's IDs in PID

NSs of which it is a member

e NStgid: thread group ID (PID!) in successively nested PID

NSs, starting (at left) from NS of reading process

@ NSpid: thread(!) ID in successively nested PID namespaces

o See proc(5) and namespaces/pid_namespaces.go

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces

436 §4.7

PID namespaces and /proc/PID

@ /proc/PID directories contain info about processes
corresponding to a PID NS

e Allows us to introspect system

e Without /proc, many systems tools will fail to work
@ ps, top, etc.

e Some library functions also rely on /proc
e E.g., fexecve(3)

e = create new mount NS at same time, and remount /proc

@ To mount /proc:

mount -t proc proc /proc

o Or use mount(2):

mount ("proc", "/proc", "proc", 0, NULL)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-37 8§47

PID namespaces and /proc/PID

@ Mount and PID namespaces are orthogonal
@ In new PID NS, we'll see /proc/PID of parent NS until we
stack a new mount on /proc

e But note: /proc/self always provides process with info

about itself, regardless of whether /proc corresponds to
process's PID NS

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-38 §4.7

PID namespaces and init

First process inside new PID NS is special:
@ Gets PID 1 (inside the NS)

@ Fulfills role of init

e Performs “system” initialization
e Becomes parent of orphaned children

o If killed/terminated, all other processes in NS are terminated
(SIGKILL), and NS is torn down

e And it is no longer possible to fork() new processes into NS
(after unshare() or setns())

@ (All of the above perfectly supports model of containers as
virtual systems)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-39 §4.7

PID namespaces demo

@ Create a PID NS and mount a /proc filesystem for that NS:

$ sudo unshare --pid --fork --mount-proc dash

@ Inside PID NS, display PID of shell, and start a sleep process
and display its PID:

echo $$

1

sleep 1000 &

pidof sleep # 'pidof' used PID 3
2

@ Take a look in /proc:

1s -1 /proc

1 # dash
2 # sleep
4 # 1s
acpi

e PIDs outside NS are not visible

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-40 §4.7

PID namespaces demo

@ From another terminal window (in initial PID NS), display
PID of dash and sleep:

$ pidof dash
22645
$ pidof sleep
22677

e Processes are visible outside NS, but with different PIDs!

@ If we kill init process of a PID NS, all other processes in NS
are also killed:

$ sudo kill -9 22645 # Kill PID 1 in inner NS
$ sudo kill -9 22677 # Is 'sleep' process still present?
bash: kill: (22677) - No such process

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces 4-41 8§47

This page intentionally blank

This page intentionally blank

Linux Security and Isolation APIs Essentials

Namespaces APls

Michael Kerrisk, man7.org © 2025

October 2025

mtk@man7.org

Outline
5 Namespaces APls 5-1
5.1 API Overview 5-3

5.2 Creating a child process in new namespaces: clone() 5-5

Outline

5 Namespaces APIs 5-1
5.1 API Overview 5-3

Overview of namespaces API

@ System calls:

o clone(): create new NS(s) (while creating new process)

o unshare(): create new NS(s) and move caller into it/them
e Analogous shell command: unshare(1)

o clone() and unshare() can employ one (or more) of flags:
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,
CLONE_NEWNS, CLONE_NEWPID, CLONE_NEWTIME (unshare only),
CLONE_NEWUSER, CLONE_NEWUTS

e Creating new NS instance requires CAP_SYS_ADMIN

@ Except user NSs, which require no capabilities

o setns(): move caller to another (existing) NS instance
@ Analogous shell command: nsenter(1)

@ /proc files

.org

o /proc/PID/ns/* files (+ other NS-specific files)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-4 §5.1

Outline

5 Namespaces APIs 5-1

5.2 Creating a child process in new namespaces: clone() 5-5

The clone() system call

#include <sched.h>
int clone(int (*child_func) (void *), void *stack,
int flags, void *arg);

@ Creates new child process (like fork())

@ Much lower-level API that gives control of many facets of
process/thread creation

o Used to implement pthread_create()
o Can be used to implement fork() (glibc does this)
@ Above prototype is actually for glibc clone() wrapper function

e Underlying syscall has somewhat different arguments

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-6 §5.2

The clone() system call

#include <sched.h>
int clone(int (*child_func) (void *), void *stack,
int flags, void *arg);

@ Returns PID of new process as function result

@ New process begins execution by calling "start” function
child_func, of form:

int child_func(void *arg) {

}

@ arg is argument to be given in call to child_func

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-7 §5.2

The clone() system call

#include <sched.h>
int clone(int (*child_func) (void *), void *stack,
int flags, void *arg);

@ flags consists of flag bits ORed with signal number
o Signal is delivered to caller when child terminates (like
traditional SIGCHLD)
@ 20+ flag bits spanning many different pieces of functionality
e Use one or more of CLONE_NEWx* flags to place new process
in newly created namespace(s)

@ stack points to top of region to be used for child’s
(downwardly growing) stack

org

Security and Isolation APIls Essentials ©2025 M. Kerrisk Namespaces APIs 5-8 §5.2

Create a (new process and) new namespace with clone()

demo_uts_namespaces <hostname>

@ Uses clone() to create child process in new UTS namespace
@ Child changes hostname in new UTS namespace

@ Parent and child fetch (uname(2)) and display hostname

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-9 §5.2

namespaces/demo_uts_namespaces.c

int main(int argc, char *argv[]) {
struct utsname uts;
char *stack = mmap(..., STACK_SIZE, ...);

pid_t child_pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUTS | SIGCHLD, argv[1]);

munmap (stack, STACK_SIZE);

sleep(1);

uname (&uts) ;

printf ("uts.nodename in parent: %s\n", uts.nodename);

waitpid(child_pid, NULL, 0); /* Wait for child */

@ clone() creates new child process

@ CLONE_NEWUTS creates new UTS NS
e New process is placed in that NS

@ Sleep, so child has time to change and display hostname

@ Fetch and display hostname of parent's UTS NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-10 §5.2

namespaces/demo_uts_namespaces.c

static int childFunc(void *arg) {
sethostname (arg, strlen(arg));

struct utsname uts;

uname (&uts) ;

printf ("uts.nodename in child: %s\n", uts.nodename) ;
sleep(1000);

return O; /* Terminates child */

@ “Start” function executed by child created by clone()
@ Change hostname in child's UTS NS

@ Fetch and display hostname of child's UTS NS

@ Sleep for a while, so child and NS continue to exist
°

Child terminates when “start” function returns

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-11 §5.2

namespaces/demo_uts_namespaces.c

Running the program demonstrates that the parent and child are
in separate UTS namespaces:

$ uname -n # Show hostname in initial UTS namespace
bienne

$ sudo ./demo_uts_namespaces tekapo

PID of child created by clone() is 14958

uts.nodename in child: tekapo

uts.nodename in parent: bienne

@ Privilege is needed to create the new UTS NS

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Namespaces APIs 5-12 §5.2

Linux Security and Isolation APIs Essentials

User Namespaces

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline

6 User Namespaces

6.1 Overview of user namespaces

6.2 Creating and joining a user namespace
6.3 User namespaces: UID and GID mappings
6.4 Exercises

6-1
6-3

6-14
6-27

6.5 Combining user namespaces with other namespaces 6-30

Outline

6 User Namespaces 6-1
6.1 Overview of user namespaces 6-3

Introduction

@ Milestone release: Linux 3.8 (Feb 2013)
e User NSs can now be created by unprivileged users...
@ Allow per-namespace mappings of UIDs and GIDs

e l.e., process's UIDs and GIDs inside NS may be different
from |IDs outside NS

@ Interesting use case: process has nonzero UID outside NS,
and UID of 0 inside NS
e = Process has root privileges for operations inside user NS
@ We will learn what this means...

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-4 §6.1

Relationships between user namespaces

@ User NSs have a hierarchical relationship:
e A user NS can have 0 or more child user NSs
e Each user NS has parent NS, going back to initial user NS

@ Initial user NS == sole user NS that exists at boot time

e Parent of a user NS == user NS of process that created this
user NS using clone() or unshare()

@ Parental relationship determines some rules about how
capabilities work in NSs (later...)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-5 §6.1
Outline
6 User Namespaces 6-1

6.2 Creating and joining a user namespace 6-6

Creating and joining a user NS

@ New user NS is created with CLONE_NEWUSER flag
o clone() = child is made a member of new user NS

o unshare() = caller is made a member of new user NS

@ Can join an existing user NS using setns()
e Process must have CAP_SYS_ADMIN capability in target NS
@ (The capability requirement will become clearer later)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-7 §6.2

User namespaces and capabilities

@ A process gains a full set of permitted and effective
capabilities in the new/target user NS when:

o It is the child of clone() that creates a new user NS
o It creates and joins a new user NS using unshare()
e It joins an existing user NS using setns()

@ But, process has no capabilities in parent/previous user NS
e /\ Even if it was root in that NS!

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk User Namespaces 6-8 §6.2

Example: namespaces/demo _userns.c

./demo_userns

@ (Very) simple user NS demonstration program
@ Uses clone() to create child in new user NS
@ Child displays its UID, GID, and capabilities

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-9 §6.2

Example: namespaces/demo _userns.c

#define STACK_SIZE (1024 * 1024)

int main(int argc, char *argv[]) {
char *stack = mmap(..., STACK_SIZE); /* Allocate memory for
child's stack */
pid_t pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, argv[1]);
printf ("PID of child: ’%1d\n", (long) pid);

munmap (stack, STACK_SIZE); /* Deallocate stack */

waitpid(pid, NULL, O0);
exit (EXIT_SUCCESS) ;

@ Use clone() to create a child in a new user NS
o Child will execute childFunc(), with argument argv[1]

@ Printing PID of child is useful for some demos...

@ Wait for child to terminate

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-10 §6.2

Example: namespaces/demo _userns.c

static int childFunc(void *arg) {
for (5;) {
printf ("eUID = %1d; eGID = %1d; ",

(long) geteuid(), (long) getegid());

cap_t caps = cap_get_proc(Q;

char *str = cap_to_text(caps, NULL);
printf("capabilities: %s\n", str);
cap_free(caps);

cap_free(str);

if (arg == NULL)
break;
sleep(5);
}

return O;

@ Display PID, effective UID 4 GID, and capabilities
o If arg (argv[1]) was NULL, break out of loop

@ Otherwise, redisplay IDs and capabilities every 5 seconds

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-11 §6.2

Example: namespaces/demo _userns.c

$ id -u # Display effective UID of shell process
1000
$ id g # Display effective GID of shell process
1000

$./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Upon running the program, we'll see something like the above

@ Program was run from unprivileged user account

@ =ep means child process has a full set of permitted and
effective capabilities

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk User Namespaces 6-12 §6.2

Example: namespaces/demo _userns.c

$ id -u # Display effective UID of shell process
1000
$ id g # Display effective GID of shell process
1000

$./demo_userns
eUID = 65534; eGID = 65534; capabilities: =ep

Displayed UID and GID are “strange”

@ System calls such as geteuid() and getegid() always return
credentials as they appear inside user NS where caller resides

@ But, no mapping has yet been defined to map IDs outside
user NS to IDs inside NS

@ = when a UID is unmapped, system calls return value in
/proc/sys/kernel/overflowuid

e Unmapped GIDs = /proc/sys/kernel/overflowgid
e Default value, 65534, chosen to be same as NFS nobody ID

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-13 §6.2

Outline

6 User Namespaces 6-1

6.3 User namespaces: UID and GID mappings 6-14

UID and GID mappings

@ One of first steps after creating a user NS is to define UID
and GID mapping for NS
@ Mappings for a user NS are defined by writing to 2 files:
/proc/PID/uid_map and /proc/PID/gid map
e Each process in user NS has these files; writing to files of any
process in the user NS suffices

e Initially, these files are empty

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-15 §6.3

UID and GID mappings

@ Records written to/read from uid_map and gid_map have
this form:

ID-inside-ns ID-outside-ns length

e ID-inside-ns and length define range of IDs inside user NS
that are to be mapped

e [D-outside-ns defines start of corresponding mapped range in
“outside” user NS

@ E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

0 1000 10

e /\ To properly understand /D-outside-ns, we must first look
at a picture

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk User Namespaces 6-16 §6.3

Understanding UID and GID maps

Initial user NS (NS 0)

1000 1009 1014 1020 1029
9 " T50 54 7o ~
Child NS 1 Child NS 2 Child NS 4

Map: 0 1000 10 Map: 50 1000 15 Map: 0 1020 10
T
| |
ChildNS3

Map: 10 50 10

"What does ID X in namespace Y map to in namespace Z?" means
“what is the equivalent ID (if any) in namespace Z?"

What does ID 5 in NS 1 map to in the initial NS (NS 0)?
What does ID 5 in NS 1 map to in NS 2 and NS 37
What does ID 15 in NS 3 map to in NS 2 and NS 17
What does the UID 0 in NS 4 map to in NS 17

rqg

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-17 §6.3

Interpretation of /D-outside-ns

e /\ Interpretation(*) of ID-outside-ns depends on whether
“opener” and PID are in same user NS

o “opener” == process that is opening + reading/writing
map file
e PID == process whose map file is being opened

(*) Note: contents of uid_map/gid_map are generated on the fly by the

kernel, and can be different in different processes

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-18 §6.3

Interpretation of ID-outside-ns

@ If “opener” and PID are in same user NS:
e ID-outside-ns interpreted as ID in parent user NS of PID

e Common case: process is writing its own mapping file

o If “opener” and PID are in different user NSs:
e ID-outside-ns interpreted as ID in opener’s user NS

o Equivalent to previous case, if “opener” is (parent) process
that created user NS using clone()

e /\ Only ID-outside-ns is interpreted; ID-inside-ns and length
are always treated literally

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-19 §6.3

Quiz: reading /proc/PID/uid_map

(Initial user NS }

-

Child user NS Child user NS
uid_map: 200 1000 1 uid_map: 0 1000 1
Contains PID 2366 Contains PID 2571
N

@ If PID 2366 reads /proc/2571/uid_map, what should it see?
e 0 200 1

@ If PID 2571 reads /proc/2366/uid_map, what should it see?
e 200 0 1

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk User Namespaces 6-20 §6.3

Example: updating a mapping file

@ Let's run demo_userns with an argument, so it loops:

$ id -u # Display user ID of shell
1000

$ id -G # Display group IDs of shell
1000 10

$./demo_userns x
PID of child: 2810
eUID = 65534; eGID = 65534; capabilities: =ep

@ Then we switch to another terminal window (i.e., a shell
process in parent user NS), and write a UID mapping:

echo '0 1000 1' > /proc/2810/uid_map

@ Returning to window where we ran demo userns, we see:

eUID = 0; eGID = 65534; capabilities: =ep

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-21 §6.3

Example: updating a mapping file

@ But, if we go back to second terminal window, to create a
GID mapping, we encounter a problem:

$ echo 'O 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted

@ There are (many) rules governing updates to mapping files
e Inside the new user NS, user is getting full capabilities

o It is critical that capabilities can’t leak

@ l.e., user must not get more privileges than they would
otherwise have outside the NS

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-22 §6.3

Validity requirements for updating mapping files

If any of these rules are violated, write() fails with EINVAL:

@ There is a limit on the number of lines that may be written
e Since Linux 4.15 (2017): up to 340 lines

e Linux 4.14 and earlier: up to 5 lines

@ Each line contains 3 valid numbers, with length > 0, and a
newline terminator

@ The ID ranges specified by the lines may not overlap
o (Because that would make IDs ambiguous)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-23 §6.3

Permission rules for updating mapping files

If any of these “permission” rules are violated when updating
uid_map and gid_map files, write() fails with EPERM:

@ Each map may be updated only once
@ Writer must be in target user NS or in parent user NS
@ The mapped IDs must have a mapping in parent user NS

@ Writer must have following capability in target user NS
e CAP_SETUID for uid_map

e CAP_SETGID for gid_map

.org

Security and Isolation APIls Essentials ©2025 M. Kerrisk User Namespaces 6-24 §6.3

Permission rules for updating mapping files

As well as preceding rules, one of the following also applies:

o Either: writer has CAP_SETUID (for uid_map) or
CAP_SETGID (for gid_map) capability in parent user NS:

e = no further restrictions apply (more than one line may be
written, and arbitrary UIDs/GIDs may be mapped)
@ Or: otherwise, all of the following restrictions apply:
Only a single line may be written to uid_map (gid_map)

That line maps only the writer’s eUID (eGID)

e Usual case: we are writing a mapping for eUID/eGID of
process that created the NS

eUID of writer must match eUID of creator of NS
@ (eUID restriction also applies for gid_map)

For gid_map only: corresponding /proc/PID/setgroups
file must have been previously updated with string “deny”

o (Fix for a security bug in earlier kernels)

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-25 §6.3

Example: updating a mapping file

@ Going back to our earlier example:

$ echo 'O 1000 1' > /proc/2810/gid_map
bash: echo: write error: Operation not permitted
$ echo 'deny' > /proc/2810/setgroups
$ echo 'O 1000 1' > /proc/2810/gid_map
$ cat /proc/2810/gid_map
0 1000 1

o After writing “deny” to /proc/PID/setgroups file, we can
update gid_map

@ Upon returning to window running demo userns, we see:

eUID = 0; eGID = 0; capabilities: =ep

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-26 §6.3

Outline

6 User Namespaces 6-1

6.4 Exercises 0-27

Exercises

If you are using Ubuntu 24.04 or later, you may need to disable an AppArmor setting that
disables the creation of user namespaces by unprivileged users. You can do this using the
following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

@ Try replicating the steps shown earlier on your system:

@ Use the id(1) command to discover your UID and GID; you will need this
information for a later step.

@ Run the namespaces/demo_userns.c program with an argument (any string),
so it loops. Verify that the child process has all capabilities.

@ |Inspect (readlink(1)) the /proc/PID/ns/user symlink for the demo_userns
child process and compare it with the /proc/PID/ns/user symlink for a shell
running in the initial user namespace (for the latter, simply open a new shell
window on your desktop). You should find that the two processes are in
different user namespaces.

@ From a shell in the initial user NS, define UID and GID maps for the
demo_userns child process (i.e., for the UID and GID that you discovered in
the first step). Map the ID-outside-ns value for both IDs to IDs of your choice
in the inner NS.

[Exercise continues on the next slide]

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-28 §6.4

Exercises

@ This step will involve writing to the uid_map, setgroups, and gid_map
files in the /proc/PID directory.

@ Verify that the UID and GID displayed by the looping demo_userns program
have changed.

e What are the contents of the UID and GID maps of a process in the initial user
namespace?

$ cat /proc/1/uid_map

e © The script namespaces/show_non_init_uid_maps.sh shows the processes on the
system that have a UID map that is different from the init process (PID 1). Included
in the output of this script are the capabilities of each processes. Run this script to
see examples of such processes. As well as noting the UID maps that these processes
have, observe the capabilities of these processes.

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-29 §6.4

Outline

6 User Namespaces 6-1

6.5 Combining user namespaces with other namespaces 6-30

Combining user namespaces with other namespaces

@ Creating other (non-user) NSs requires CAP_SYS_ ADMIN

@ Creating user NSs requires no capabilities
e And process in new user NS gets full capabilities

@ = We can create a user NS, and then create other NS types
inside that user NS

o l.e., two clone() or unshare() calls

@ Actually, we can achieve desired result in one call; e.g.:

clone(child_func, stackptr, CLONE_NEWUSER | CLONE_NEWUTS, arg);

// or
unshare (CLONE_NEWUSER | CLONE_NEWUTS) ;

e Kernel creates user NS first, then other NS types
@ And the other NSs are owned by the user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces 6-31 §6.5

Linux Security and Isolation APIs Essentials

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline

7 User Namespaces and Capabilities
7.1 User namespaces and capabilities
7.2 Exercises

r-1
7-3
r-11

7.3 What does it mean to be superuser in a namespace? 7-14

7.4 Homework exercises

7-23

Outline

7 User Namespaces and Capabilities 7-1
7.1 User namespaces and capabilities -3

What are the rules that determine
the capabilities that a process
has in a given user namespace?

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-4 §7.1

User namespace hierarchies

@ User NSs exist in a hierarchy
e Each user NS has a parent, going back to initial user NS

@ Parental relationship is established when user NS is created:

o clone(): parent of new user NS is NS of caller of clone()
o unshare(): parent of new user NS is caller’s previous NS

@ Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 75 §7.1

User namespaces and capabilities

@ Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in process’s effective set

Which user NS the process is a member of

The process's effective UID

The effective UID of process that created target user NS

The parental relationship between process’'s user NS and
target user NS

@ See also namespaces/ns_capable.c
o (A program that encapsulates the rules described next)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-6 §7.1

Capability rules for user namespaces

© A process has a capability in a user NS if:
e it is a member of the user NS, and

e capability is present in its effective set
e Note: this rule doesn't grant that capability in parent NS

© A process that has a capability in a user NS has the
capability in all descendant user NSs as well

e l.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS
© A process in a parent user NS that has same eUID as
eUID of creator of user NS has all capabilities in the NS
e At creation time, kernel records eUID of creator as
“owner” of user NS

e By virtue of previous rule, process also has capabilities in all
descendant user NSs

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-7 §7.1

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B Process A Process X
UID = 1001, caps: = UID = 1000, caps: = UID =0, caps: =ep

User namespace

"Is user NS

parent of"

\ creator UID = 1000

Child user NS
uid_map: 5 1000 10

Process C Process D
UID =6, caps: =

UID =5, caps: =ep

@ Child user NS was created by a process with UID 1000

e That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1

@ Process X has all capabilities in initial user NS

@ Assume process A and process B have no capabilities in initial user NS
@ Assume C was first process in child NS and has all capabilities in NS
o

Process D has no capabilities

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-8 §7.1

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B Process A Process X
UID = 1001, caps: = UID = 1000, caps: = UID =0, caps: =ep
"Is user NS
\ creator UID = 1000 parent of"

Child user NS
uid_map: 5 1000 10

Process C Process D
UID =5, caps: =ep UID =6, caps: =

Sending a signal requires UID match or CAP_KILL capability
To which of B, C, D can process A send a signal?

Can B send a signal to D? Can D send a signal to B?

(*)
(*]
o
@ Can process X send a signal to processes C and D?
@ Can process C send a signal to A? To B?

*)

Can C send a signal to D?

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 79 §7.1

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B Process A Process X
UID = 1001, caps: = UID = 1000, caps: = UID =0, caps: =ep

User namespace

"Is user NS
B —
parent of"

\ creator UID = 1000

Child user NS
uid_map: 5 1000 10

Process C Process D
UID =5, caps: =ep UID = 6, caps: =

@ A can't signal B, but can signal C (matching credentials) and D
(because A has capabilities in D's NS)

B can signal D (matching credentials); likewise, D can signal B
X can signal C and D (because it has capabilities in parent user NS)
C can signal A (credential match), but not B

C can signal D, because it has capabilities in its NS

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-10 §7.1

Outline

7 User Namespaces and Capabilities 7-1
7.2 Exercises 7-11
Exercises

If you are using Ubuntu 24.04 or later, you may need to disable an
AppArmor setting that disables the creation of user namespaces by
unprivileged users. You can do this using the following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

@ As an unprivileged user, start two sleep processes, one as the
unprivileged user and the other as UID 0:

$ id -u

1000

$ sleep 1000 &

$ sudo sleep 2000

As superuser, in another terminal window use unshare to create a user
namespace with root mappings and run a shell in that namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

[Exercise continues on next slide]

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-12 §7.2

Exercises

@ (Root mappings == process’s UID and GID in parent NS map to 0
in child NS)

@ Setting the SUDO_PS1 environment variable causes sudo(8) to set the PS1
environment variable for the command that it executes. (PS1 defines the
prompt displayed by the shell.) The bash --norc option prevents the execution
of shell start-up scripts that might change PS1.

Verify that the shell has a full set of capabilities and a UID map
“0 0 1" (i.e., UID 0 in the parent namespace maps to UID 0 in the

child user namespace):

ns2# grep -E 'Cap(Prm|Eff)' /proc/$$/status
ns2# cat /proc/$$/uid_map

From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs

ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-13 §7.2
Outline
7 User Namespaces and Capabilities 7-1

7.3 What does it mean to be superuser in a namespace? 7-14

User namespaces and capabilities

@ Kernel grants initial process in new user NS a full set of
capabilities

@ But, those capabilities are available only for operations on
objects governed by the new user NS

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-15 §7.3

User namespaces and capabilities

@ Kernel associates each non-user NS instance with a
specific user NS instance

e Each non-user NS is “owned” by a user NS

e When creating a new non-user NS, user NS of the creating
process becomes the owner of the new NS

@ Suppose a process operates on global resources governed by
a (non-user) NS:
e Privilege checks are done according to process’s capabilities
in user NS that owns the NS

@ = User NSs can deliver full capabilities inside a user NS
without allowing capabilities in outer user NS(s)

o (Barring kernel bugs)

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-16 §7.3

User namespaces and capabilities—an example

v ..
Initial user namespace
creator eUID: 0

\
\
is owned b <
Y 4
cd by Child user namespace) Initial UTS Initial network
is oW creator eUID: 1000 namespace namespace
Second UTS L3 e
namespace ,1s member of - §
A S . 1 8
R Process X L7
Ibbe}(\)f | eUID inside NS: 0 7w

eUID in outer NS: 1000
capabilities: =ep

@ Example scenario; X was created with: unshare -Ur -u <prog>
e Xisin a new user NS, created with root mappings

e Xisin a new UTS NS, which is owned by new user NS
e X is in initial instance of all other NS types (e.g., network NS)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-17 §7.3
User namespaces and capabilities—an example
(Initial user namespace
| creator eUID: 0
\
is owned b <
Y 4
cd 0y Child user namespace) Initial UTS Initial network
is own! creator eUID: 1000 namespace namespace
Second UTS L3 e
,1s member of g
namespace | 240
- 6
LN Process X _« /&\e
by~ eUID inside NS: 0 LT
2o

eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to change host name (CAP_SYS_ADMIN)
@ E.g., hostname bienne

@ Xisin second UTS NS
@ Privileges checked according to X's capabilities in user NS that owns

that UTS NS = succeeds (X has capabilities in user NS)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-18 §7.3

User namespaces and capabilities—an example

v ..
Initial user namespace

creator eUID: 0
Y

\.

is owned b <
Y 4
cd by Child user namespace) Initial UTS Initial network
is oW creator eUID: 1000 namespace namespace
S d UTS e
(econ J Tis member of %
namespace S o
I - (Oeﬁ
Process X _ /6\@(“

A3 .

tg 45 P
075@}5 ~| eUID inside NS: 0 TN

- eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to bring network device up/down (CAP_NET_ADMIN)
@ E.g., ip link set dev lo down

@ X is in initial network NS

@ Privileges checked according to X's capabilities in user NS that owns
network NS = attempt fails (no capabilities in initial user NS)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-19 §7.3

Containers and namespaces

Initial
user NS
A,
Initial Initial Initial Initial
PID NS UTS NS mnt NS NW NS
% Child N
-7 user NS Th-ll

- ~

PP /W_ is child of
- ~ ANAANANANANNANTD
! \ ! r !

i[PID NS] [UTS NS mnt NS] [NW NS] \ (a user NS)

I
! 1
X (hostname) : (mnt list) (NW infra.) ! is owned by
.) | L T Yy
s. AN » ! A i) (a user NS)
~ RN \ / - e
RS ~o \ .. / .7 - R N
AR LN Init process S I_______,:_I { Not all 1 is member of
~a ~ - . D
- (PID 1) + Container ! | NSs are 1 (a NS)
~ reman | ceceaceaceecoce- 1
. caps: =ep P | shown 1

@ “Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS

@ And does not have privilege in outside user NS
e (E.g., can’t change mounts seen by processes outside container)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-20 §7.3

Demo: effect of capabilities in a user NS

@ Create a shell in new user and UTS NSs:

$ unshare -Ur -u bash
getpcaps $$
929: =ep # Shell has all capabilities in its user NS

@ Since this shell has all capabilities in user NS that owns its
UTS NS, we can change hostname:

hostname

bienne

hostname langwied
hostname

langwied

@ But, this shell is in a network NS owned by initial user NS,
and so can't turn a NW device down:

ip link set dev lo down
RTNETLINK answers: Operation not permitted

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-21 §7.3

What about resources not governed by namespaces?

@ Some privileged operations relate to resources/features not
(yet) governed by any namespace

e E.g., load kernel modules, raise process nice values
@ Having all capabilities in a (noninitial) user NS doesn't grant

power to perform operations on features not currently
governed by any NS

o E.g., load/unload kernel modules, raise process nice values

e IOW: to perform these operations, process must have the
relevant capability in the initial user NS

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-22 §7.3

Outline

7 User Namespaces and Capabilities 7-1

7.4 Homework exercises 7-23

Homework exercises

© Using two terminal windows, and suitable unshare and nsenter
commands, construct a scenario where, in addition to the initial user
namespace, there is also a child user namespace and a grandchild user
namespace. In this scenario, the grandchild user namespace has a
member process (running, say, sleep(1)), but the child namespace does
not have (i.e., no longer has) a member process. Even though the child
namespace has no member processes, it is nevertheless pinned into
existence by virtue of being the parent of the grandchild namespace.

Once you have set up the scenario, verify the hierarchical
relationship of the user namespaces and that the child user namespace
has no member processes, using either of the following commands:

$ sudo lsns -t user --tree=owner -p $(pidof sleep)
$ cd 1lsp/namespaces; sudo go run namespaces_of.go --—namespaces=user

@ In the output of /Isns, you should see the value 0 for NPROCS (the
number of processes in the namespace).

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk User Namespaces and Capabilities 7-24 §7.4

Linux Security and Isolation APIs Essentials

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2025

mtk@man7.org

October 2025

Outline

8 Cgroups: Introduction

8.1 Preamble

8.2 What are control groups?

8.3 An example: the pids controller

8.4 Creating, destroying, and populating a cgroup
8.5 Exercises

8.6 Enabling and disabling controllers

8.7 Exercises

8-1

8-6
8-12
8-16
8-23
8-28
8-41

Outline

8 Cgroups: Introduction 8-1
8.1 Preamble 8-3
Goals

e We'll focus on:
e General principles of operation; goals of cgroups
e The cgroup?2 filesystem

e Interacting with cgroup?2 filesystem using shell commands

e By 2021, all major distros switched to cgroups v2, so we'll
ignore cgroups vl

e We'll look briefly at some of the controllers

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-4 §8.1

Resources

@ Kernel documentation files
@ V2: Documentation/admin-guide/cgroup-v2.rst

@ V1: Documentation/admin-guide/cgroup-vl/*.rst
@ Before Linux 5.3: Documentation/cgroup-vl/*.txt
@ cgroups(7) manual page
@ Chris Down, 7 years of cgroup v2 (FOSDEM 2023),
https://www.youtube.com/watch?v=LX6fM1IYZcg
@ Neil Brown's (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/
e Thought-provoking ideas on the meaning of grouping & hierarchy
@ https://lwn.net/Articles/484254/ — Tejun Heo's initial thoughts
about redesigning cgroups (Feb 2012)

@ See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

@ Other articles at https://1lwn.net/Kernel/Index/#Control_groups

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-5 §8.1
Outline
8 Cgroups: Introduction 8-1

8.2 What are control groups? 8-6

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

What are control groups?

@ Two principal components:
e A mechanism for hierarchically grouping processes

o A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

@ Interface is via a pseudo-filesystem

@ Cgroup manipulation takes form of filesystem operations,
which might be done:

e Via shell commands
e Programmatically
e Via management daemon, e.g., systemd

e Via your container framework's tools (e.g., LXC, Docker)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-7 §8.2

What do cgroups allow us to do?

@ Limit resource usage of group

o E.g., limit % of CPU available to group; limit amount of
memory that group can use

@ Resource accounting
e Measure resources used by processes in group

Limit device access
Pin processes to CPU cores

Shape network traffic

Freeze a group
o Freeze, restore, and checkpoint a group

@ And more...

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-8 §8.2

Terminology

@ Control group: a group of processes that are bound
together for purpose of resource management

o (Resource) controller: kernel component that controls or
monitors processes in a cgroup

e E.g., memory controller limits memory usage; cpu controller
limits CPU usage

e Also known as subsystem
o (But that term is rather ambiguous because so generic)

@ Cgroups are arranged in a hierarchy
e Each cgroup can have zero or more child cgroups

e Child cgroups inherit control settings from parent

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-9 §8.2

Filesystem interface

@ Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

o l.e., use mkdir(2) / rmdir(2) (or equivalent shell commands)
to create cgroups

@ Each subdirectory contains automagically created files
e Some files are used to manage the cgroup itself

e Other files are controller-specific

@ Files in cgroup are used to:
o Define/display membership of cgroup

e Control behavior of processes in cgroup

o Expose information about processes in cgroup (e.g.,
resource usage stats)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-10 §8.2

The cgroup? filesystem

@ On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup

mount -t cgroup2 none /sys/fs/cgroup

@ The cgroups v2 mount is sometimes known as the “unified
hierarchy”

e Because all controllers are associated with a single hierarchy

e By contrast, in vl there were multiple hierarchies

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-11 §8.2
Outline
8 Cgroups: Introduction 8-1

8.3 An example: the pids controller 8-12

Example: the pids controller

@ pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

@ Create new cgroup, and place shell's PID in that cgroup:

mkdir /sys/fs/cgroup/mygrp
echo $$
17273

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e cgroup.procs defines/displays PIDs in cgroup
o (Note '#' prompt = all commands done as superuser)

@ Moving a PID into a group automatically removes it from
group of which it was formerly a member

e l.e., a process is always a member of exactly one group in the
hierarchy

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-13 §8.3

Example: the pids controller

@ Can read cgroup.procs to see PIDs in group:

cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

e Where did PID 20591 come from?

e PID 20591 is cat command, created as a child of shell
@ Child process inherits cgroup membership from parent

@ pids.current shows how many processes are in group:

cat /sys/fs/cgroup/mygrp/pids.current
2

e Two processes: shell + cat

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-14 §8.3

Example: the pids controller

@ We can limit number of PIDs in group using pids.max file:

echo 5 > /sys/fs/cgroup/mygrp/pids.max

for a in $(seq 1 5); do sleep 60 & done

[1] 21283

[2] 21284

[3] 21285

[4] 21286

bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

o (The shell retries a few times and then gives up)
e pids.max defines/exposes limit on number of PIDs in cgroup

@ From a different shell, examine pids.current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

o Not possible from first shell (can’t create more processes)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-15 §8.3
Outline
8 Cgroups: Introduction 8-1

8.4 Creating, destroying, and populating a cgroup 8-16

Creating cgroups

@ Initially, all processes on system are members of root cgroup

@ New cgroups are created by creating subdirectories under
cgroup mount point:

mkdir /sys/fs/cgroup/mygrp

@ Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-17 §8.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory

@ Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

@ Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-18 §8.4

Placing a process in a cgroup

@ To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

e In multithreaded process, moves all threads to cgroup

e /\ Can write only one PID at a time
o Otherwise, write() fails with EINVAL

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-19 §8.4

Viewing cgroup membership

@ To see PIDs in cgroup, read cgroup.procs file
e PIDs are newline-separated

e Zombie processes do not appear in list

e /\ List is not guaranteed to be sorted or free of
duplicates

e PID might be moved out and back into cgroup or recycled
while reading list

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-20 §8.4

Cgroup membership details

@ A process can be member of just one cgroup
e That association defines attributes / parameters that apply
to the process

@ Adding a process to a different cgroup automatically removes
it from previous cgroup
@ On fork(), child inherits cgroup membership(s) of parent

o Afterward, cgroup membership(s) of parent and child can be
independently changed

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-21 §8.4

/proc/PID/cgroup file

@ /proc/PID/cgroup shows cgroup memberships of PID

0::/grpl

@ On a system booted in v2-only mode, there is just one line in
this file (0::...)

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-22 8§34

Outline

8 Cgroups: Introduction 8-1

8.5 Exercises 8-23

Notes for online practical sessions

@ Small groups in breakout rooms
e Write a note into Slack if you have a preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...

e Keep an eye on the #general Slack channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

e Then | have an idea of how many people have finished

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-24 8§85

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+"“+" and Control+"“-"

e Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
@ Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4+Shift+:

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-25 §8.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: .

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via Slack or another channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

e Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-26 §8.5

Exercises

© In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.
e Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).
e Execute the following command, and note the PID assigned to the
resulting process:

sleep 300 &

@ Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

@ Now write the PID of the process into the file m2/cgroup.procs.
@ Is the PID still visible in the file m1/cgroup.procs? Explain.

@ Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?

e If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-27 §8.5
Outline
8 Cgroups: Introduction 8-1

8.6 Enabling and disabling controllers 8-28

Enabling and disabling controllers

@ Each cgroup v2 directory contains two files:
e cgroup.controllers: lists controllers that are available in
this cgroup

e cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

e Always a subset of cgroup.controllers

@ Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-29 §8.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ cgroup.controllers lists the controllers that are available
in a cgroup

@ Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

e devices, freezer, network, perf_event

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-30 §8.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

@ A controller may not be available because:
e Controller is not enabled in parent cgroup
@ (Does not apply for “automatic” controllers)

e Controller was disabled at boot time
@ Using the boot option cgroup_disable=namel,...]

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-31 §8.6

Enabling controllers: cgroup.subtree control

@ cgroup.subtree_control is used to show or modify the set
of controllers that are enabled in a cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

e Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

@ Contents of cgroup.subtree control are always a subset
of cgroup.controllers
e l.e., can't enable controller that is not available in a cgroup

@ Controllers are enabled/disabled by writing to this file:

echo '+cpuset' > cgroup.subtree_control # Enable a controller
cat cgroup.subtree_control

cpuset cpu io memory pids

echo '-cpuset' > cgroup.subtree_control # Disable a controller
cat cgroup.subtree_control

cpu io memory pids

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-32 §8.6

Enabling controllers: cgroup.subtree control

@ Enabling a controller in cgroup.subtree control:
e Allows resource to be controlled in child cgroups

e Causes controller-specific attribute files to appear in
each child directory

@ Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-33 §8.6

cgroup.subtree_control example

@ Review situation in root cgroup:

cd /sys/fs/cgroup/

cat cgroup.controllers

cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control

cpu io memory pids

@ Create a small subhierarchy:

mkdir -p grp_x/grp_y

@ Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:

cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

@ Consequently, no controllers are available in grp_y:

cat grp_x/grp_y/cgroup.controllers # Empty...

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-34 §8.6

cgroup.subtree_control example

@ List cpu.x* files in grp_y:

cd /sys/fs/cgroup/grp_x
1ls grp_y/cpu.x*
grp_y/cpu.pressure grp_y/cpu.stat

o (These two files show CPU-related statistics and are present
in every cgroup)

@ Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:

echo '+cpu' > cgroup.subtree_control

1s grp_y/cpu.x*

grp yv/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp v/cpu.weight

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-35 §8.6

cgroup.subtree_control example

@ After enabling controller in parent cgroup, we can limit
resources in child cgroup...

@ Set hard CPU limit of 50% in child cgroup (grp_y):
echo '50000 100000' > grp_y/cpu.max

@ In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:

echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

@ In the other terminal, we see:

$./cpu_burner

[6445] JCPU = 99.86
[6445] JCPU = 99.83
[6445] JCPU = 83.52
[6445] YCPU = 50.00
[6445] JCPU = 50.00

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-36 §8.6

Managing controllers to differing levels of granularity

@ A controller is available in child cgroup only if it is enabled
in parent cgroup:

cat cgroup.controllers

cpuset cpu io memory hugetlb pids
cat cgroup.subtree control

cpu memory pids

cat grpl/cgroup.controllers

cpu memory pids

e cpuset, io, and hugetlb are not available in grpl

@ In grpl, none of the available controllers is initially enabled,
so no controllers are available at next level:

cat grpl/cgroup.controllers
cpu memory pids

cat grpl/cgroup.subtree_control # Empty
mkdir grpl/{grp10,grpil} # Make grandchild cgroups
cat grpl/grp2/cgroup.controllers # Empty
Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-37 §8.6

Managing controllers to differing levels of granularity

@ If we enable cpu in grpl, it becomes available at next level

echo '+cpu' > grpl/cgroup.subtree_control
cat grpl/grpl0/cgroup.controllers
cpu

e And cpu interface files appear in grpl/{grp10,grpii}

@ Here, cpu is being managed at finer granularity than memory
e We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grpll
e But we can’t make distinct memory allocation decisions
@ grpl0 and grpill will share memory allocation from grpl
e We did this by design (so we can manage different
resources to different levels of granularity):
o We want distinct CPU allocations in grp10 and grpi1

e We want grp10 and grpi1l to share a memory allocation

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-38 §8.6

Top-down constraints

@ Child cgroups are always subject to any resource constraints
established in ancestor cgroups

e = Descendant cgroups can't relax constraints imposed by
ancestor cgroups

@ If a controller is disabled in a cgroup (i.e., not present in
cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-39 §8.6

No internal tasks rule

@ Cgroups v2 enforces a rule often expressed as: “a cgroup
can't have both child cgroups and member processes”

e l.e., only leaf nodes can have member processes
e The “no internal tasks” rule

@ But the rule more precisely is:
e A cgroup can't both:

e distribute a resource to child cgroups (i.e., enable controllers
in cgroup.subtree_control), and

@ have member processes

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-40 §8.6

Outline

8 Cgroups: Introduction 8-1
8.7 Exercises 8-41
Exercises

© This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

e To simplify the following steps, change your current directory to
the cgroup root directory (/sys/fs/cgroup).

e Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:

mkdir xxx

mkdir xxx/yyy

echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

H H HH

@ Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:

echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-42 §8.7

Exercises

In another terminal, use the supplied cgroups/fork_bomb.c
program.

fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:

$./fork_bomb 30

The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:

echo parent-PID > xxx/yyy/cgroup.procs

.org

In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-43 §8.7

Exercises

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Introduction 8-44 §8.7

Linux Security and Isolation APIs Essentials

Control Groups (cgroups): Other
Controllers

Michael Kerrisk, man7.org © 2025

October 2025

mtk@man7.org

Outline
9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3
9.2 The cpu controller 9-7
9.3 The freezer controller 0-16

9.4 Exercises 0-18

Outline

9 Cgroups: Other Controllers 9-1
9.1 Overview 9-3

Cgroups v2 controllers

o Initial release of cgroups v2 (Linux 4.5), did not include
equivalents of all vl controllers

@ Remaining controllers were added later, with last appearing
in Linux 5.6

@ Documentation/admin-guide/cgroup-v2.rst documents
v2 controllers

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-4 §9.1

Summary of cgroups controllers

The following table summarizes some info about controllers that are provided in cgroups v1
and v2, including kernel versions where the controllers first appeared

v2 controller Linux | vl equivalent | Linux
cpu + 4.15 cpu 2.6.24
cpu + 4.15 cpuacct 2.6.24
cpuset + 5.0 cpuset 2.6.24
memory 4.5 memory 2.6.25
devices * 415 | devices 2.6.26
freezer * 5.2 freezer 2.6.26
network * 4.5 net cls 2.6.29
network * 4.5 net_prio 3.3 (*) v2 "automatic” controllers
io 4.5 blkio 2.6.33 (always available, not listed in
perf_event * + | 4.11 perf_event 2.6.39 cgroup.controllers)
hugetlb 5.6 hugetlb 3.6
pids + 45 pids 43 (++) v2 threaded controllers
rdma 4.11 rdma 4.3
misc 513 | n/a -
dmem 6.14 | n/a -
.org
Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-5 §9.1

Cgroups v2 controllers

@ Each of the controllers is selectable via a kernel
configuration option

e And there is an overall option, CONFIG_CGROUPS

@ For each controller, there are controller-specific files in each
cgroup directory
e Names are prefixed with controller-specific string

o Eg., cpu.weight, memory.max, pids.current

@ In following slides we look at a couple of example controllers

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-6 §9.1

Outline

9 Cgroups: Other Controllers 9-1

9.2 The cpu controller 9-7

The cpu controller

cpu: control and accounting of CPU usage
@ cpu.stat provides statistics on CPU used by cgroup

cat mygrp/cpu.stat
usage_usec 345928360
user_usec 195880335
system_usec 150048024

o Values (expressed in us) include total CPU (kernel+user)
time, and time broken down info kernel and user mode

e Values are totals of time consumed by processes while they
reside in cgroup

e Statistics include CPU consumed in descendant cgroups

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-8 §9.2

The cpu controller

@ cpu controller provides two modes to control distribution of
CPU cycles to cgroups:

e Proportional-weight mode
e Absolute-bandwidth mode

@ Default is proportional-weight mode

e Absolute-bandwidth mode is used if quota limit is set in
cCpu.max

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-9 §9.2

cpu controller: proportional-weight mode

cpu proportional-weight mode:
@ cpu.weight file defines proportion of CPU given to cgroup
e Default is 100; permitted range is 1..10000

e Proportion of CPU given to cgroup defined by quotient:
(cpu.weight / [sum of all cpu.weight at same level])

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-10 §9.2

cpu controller: proportional-weight mode

- J
| . |
A B C
weight=1000 L weight=2000) weight=1000
|
| |
X Y
weight=100 weight=400
- 2000 _ 1 :
@ Processes in B get 15551500051000 — 3 ©f CPU time
- 1000 _ 1 :
@ Processes in A and C each get 1555500077005 — 7 ©f CPU time
- 2000 100 _ 1.1 _ 1 -
@ Processes in X get 155575000+7000 * 100400 — 2 5 — 10 Of CPU time
- 2000 400 1 4 _ 4 :
® Processes in Y get 1555755001000 * Too+400 — 2~ 5 — 10 ©f CPU time
Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-11 §9.2

cpu controller: proportional-weight mode

cpu proportional-weight mode:
@ Constraints have effect only if there is competition for

CPU
o No effect until [# CPU-bound processes] > [# CPUs]

e For experiments, use taskset(1) to constrain multiple
processes to same CPU

@ Constraints propagate proportionally into child cgroups

e l.e., child cgroups further subdivide proportion given to
parent cgroup

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-12 §9.2

cpu controller: absolute-bandwidth mode

cpu absolute-bandwidth mode:

@ Used to set absolute limit on CPU that can be consumed per
defined period

@ Limit is defined by writing two values to cpu.max:

echo '<quota> <period>' > cpu.max

o period: measurement period for CFS scheduler (microsecs;
range: [1000..1'000'000]; default: 100'000)

o Larger period means CPU is allocated in longer bursts (i.e.,
1000/2000 is not same as say 50'000/100'000)

e quota: allowed run-time within period (range: > 1000)
e quota/period expresses fraction of one CPU; can be > 1

e If cgroup exhausts its quota within a given period, it is
throttled until the next period

e Default: max == no limit/inherit quota from parent

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-13 §9.2

cpu controller: absolute-bandwidth mode

cpu absolute-bandwidth mode:
@ Quota is enforced even if no other competitors for CPU

@ Parent quota is a cap for child quota

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-14 §9.2

cpu controller: absolute-bandwidth mode

A
quota=50000)

P Q R
quota=40000 L quota=20000) quota=10000

X
quota=30000
. J

Assume that period is 100'000 in all cgroups

o
@ Processes under A will get maximum of 50% of (one) CPU
@ Processes under Q will get maximum of 20% of CPU

o

Processes under X will get maximum of 20% of CPU (capped
by Q)

@ Note that sibling cgroups under A are oversubscribed (they
~won't get 70% of CPU)

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-15 §9.2
Outline
9 Cgroups: Other Controllers 9-1

9.3 The freezer controller 0-16

The freezer controller

freezer: freeze (suspend) and thaw (resume) processes in a
cgroup
e Cgroup is frozen/thawed by writing 1/0 to cgroup.freeze
o Operations propagate to descendant cgroups
e cgroup.freeze is not present in root cgroup
@ Useful for container migration and checkpoint/restore
e And, e.g., docker pause

@ Gets around some limitations of using SIGSTOP/SIGCONT for
this purpose
e SIGSTOP is observable by waiting parent or ptracer
e SIGCONT can be caught by application!

e Observability of these signals can cause behavior changes in

applications
Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-17 §9.3
Outline
9 Cgroups: Other Controllers 9-1

9.4 Exercises 0-18

Exercises

Note: for most of the following exercises, it will be best if you arrange your terminal
windows (or use a terminal multiplexer such as tmux) so that all windows are visible at
the same time. This will enable you to more easily see the effects that operations
performed in one terminal window have on processes running in other terminals.

e The cpu controller implements bandwidth-based throttling of CPU usage. Throttling
is specified by writing a pair of numbers to cpu.max:

echo '<quota> <period>' > cpu.max

@ period: the period used for allocating CPU bandwidth (usec; default 100°000).
@ quota: the portion of the period available to this cgroup (usec; default “max”,
meaning no limit).
Perform the following experiments:
@ Check the cgroup.subtree_control file in the root cgroup to see if the cpu
controller is enabled, and if it is not, enable it.
Q Create two sibling CPU cgroups, named fast and slow.

© In the fast cgroup, set a quota of 30’000 and a period of 100'000:

echo '30000 100000' > fast/cpu.max

In the slow cgroup, set quota to 10’000 and period to 100’000.

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-19 §9.4

Exercises

0 Run two instances of the timers/cpu_burner.c program, which consumes
CPU time. The program prints a message every second that includes the
percentage of CPU time it received during that second. (i.e.,

CPU-time / elapsed-time). Place the two instances in the different CPU
cgroups, and observe the effect on the rate of execution of the two programs.
What happens if you adjust the quota to 50’000 in the slow cgroup?

e Suspend the two cpu_burner processes using control-Z and then check how
much CPU time has been consumed in each cgroup by examining the
usage_usec field in the file cpu.stat in each directory. This field shows CPU
usage in microseconds, which can be converted to seconds using commands
such as the following:

$ awk '/usage_usec/ {print $2 / 1000000}' < slow/cpu.stat
$ awk '/usage_usec/ {print $2 / 1000000}' < fast/cpu.stat

0 If you move the process in the slow cgroup to the fast cgroup, does this
change the usage_usec value in either of the cpu.stat files?

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-20 §9.4

Exercises

@ The freezer controller can be used to suspend and resume execution of all of the
processes in a cgroup hierarchy. (Note that the freezer controller is one of the
“automatic” controllers; it is always available, and doesn’t need to be enabled in
cgroup.subtree_control.)

In total, you will need 5 terminal windows for this exercise, and it is best to
arrange your screen so that all terminal windows are visible at the same time. You
may find it useful to install tmux, and then run the following command in a “large”
terminal window where the current working directory is 1sp/timers:

cd lsp/timers

tmux new-session \; splitw \; splitw \; splitw -h \; splitw -h -t 1 \; \
send -t 1 'clear && echo \# Run a "cpu_burner" here' C-m \;
send -t 2 'clear && echo \# Run a "cpu_burner" here' C-m \;
send -t 3 'clear && echo \# Run a "cpu_burner" here' C-m \;
send -t 4 'clear && echo \# Run a "cpu_burner" here' C-m \;
send -t O 'clear && echo \# Perform cgroup operations here' C-m \; \
set-option mouse on

P

e Create a cgroup hierarchy containing two child cgroups (thus three cgroups in
total) as follows:

mkdir /sys/fs/cgroup/mfz
mkdir /sys/fs/cgroup/mfz/subl
mkdir /sys/fs/cgroup/mfz/sub2

org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-21 §9.4

Exercises

© Then run four separate instances of the timers/cpu_burner.c program (in
four separate terminal windows), and place two of the resulting processes in
the mfz/subl cgroup, and one process in each of mfz and mfz/sub2. Arrange
your screen so that you can see all four terminal windows simultaneously.
Observe what happens to these processes as each of the following
commands are executed.

e Freeze the processes in the mfz/subl cgroup:

echo 1 > /sys/fs/cgroup/mfz/subl/cgroup.freeze

© Freeze all of the processes in all cgroups under the mfz subtree:

echo 1 > /sys/fs/cgroup/mfz/cgroup.freeze

© Thaw the mfz subtree (which processes resume execution?):

echo 0 > /sys/fs/cgroup/mfz/cgroup.freeze

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-22 §9.4

Exercises

0 Once more freeze the entire mfz subtree, and then try thawing just the
processes in the mfz/subl cgroup:

echo 1 > /sys/fs/cgroup/mfz/cgroup.freeze
echo 0 > /sys/fs/cgroup/mfz/subl/cgroup.freeze

Do the processes in the mfz/subl cgroup resume execution? Why not? For a
clue, view the state of this cgroup using the following command:

grep frozen /sys/fs/cgroup/mfz/subl/cgroup.events

[#)

Try moving one of the processes in the frozen mfz cgroup into the root cgroup.
What happens?

0 Use the kill -KILL command to send a SIGKILL signal to a process in a
frozen cgroup? Is the process killed immediately? (A design bug in cgroups v1
meant that the process was not killed immediately in this scenario.)

n7.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Cgroups: Other Controllers 9-23 §9.4

This page intentionally blank
But, here's a tech talk you might enjoy:

Simplicity: Not Just for Beginners
Kate Gregory, NDC TechTown 2018

https://www.youtube.com/watch?v=Ic2y6w381MPA

https://www.youtube.com/watch?v=Ic2y6w8lMPA

Linux Security and Isolation APIs Essentials

Wrapup

Michael Kerrisk, man7.org © 2025

October 2025

mtk@man7.org

Outline

10 Wrapup 10-1
10.1 Wrapup 10-3

Outline

10 Wrapup 10-1
10.1 Wrapup 10-3

Course materials

@ |I'm the (sole) producer of the course book and example
programs

@ Course materials are continuously revised

@ Send corrections and suggestions for improvements to
mtk@man7.org

.org

Security and Isolation APIs Essentials ©2025 M. Kerrisk Wrapup 10-4 §l10.1

Marketing

@ Independent trainer, consultant, and writer

e Author of The Linux Programming Interface

@ Reputation / word-of-mouth are important for my business...

@ Let people know about these courses!

e Linux/UNIX

system programming

@ Linux security and isolation APls
@ Namespaces, cgroups, seccomp, and capabilities

@ System programming for Linux containers

e Building and using shared libraries

e Linux/UNIX

network programming

e TCP/IP fundamentals

@ Subsets/combinations of the above; see next slide

@ Further courses to be announced: http://man7.org/training/

orqg

Security and Isolation APIs Essentials ©2025 M. Kerrisk Wrapup 10-5 §l10.1

Course overview (see https://man7.org/training)

Linux/UNIX System Programming (LUSPO1, 5 days)

(SPINTROOL, 2 days)

System Programming Fundamentals Threads and IPC Programming

Y

(TIPCO1, 3 days)

POSIX Threads IPC Programming
(PTHRO1, 1 day) (IPC02, 3 days)

System Programming for Linux Containers (SPLC02, 5 days)

System Prog.

Linux Security and Isolation APIs (SECISOL02, 4 days)

Essentials
(SPESSO1, 1d)

Y

Capabilities + Namespaces Seccomp Control Groups

(CAPNSO1, 2 days) (SECCOMPO1, 1d) | | (CGROUPS02, 1d)

Linux/UNIX Network
Prog. (NWPO03, 3 days)

TCP/IP Fundamentals
(TCPIPO1, 1 day)

Linux Shared Libraries

(SHLIBO04, 2.5 days)

@ Nesting indicates a topic that can be taken either as a
separate course or as part of a longer course

@ Arrows show a suggested prerequisite course

http://man7.org/training/
https://man7.org/training
https://man7.org/training/lusp/
https://man7.org/training/spintro/
https://man7.org/training/tipc/
https://man7.org/training/ipc/
https://man7.org/training/pthr/
https://man7.org/training/splc/
https://man7.org/training/secisol/
https://man7.org/training/capns/
https://man7.org/training/cgroups/
https://man7.org/training/cgroups/
https://man7.org/training/spess/
https://man7.org/training/nwp/
https://man7.org/training/tcpip/
https://man7.org/training/shlib/

mtk@man7.org

Thanks!

©mbkerrisk linkedin.com /in /mkerrisk

PGP fingerprint: 4096R/3A35CE5E

http://man7.org/training/

http://man7.org/training/

	Course Introduction 1-1
	Course overview 1-3
	System/software requirements 1-7
	Course materials and resources 1-10
	Common abbreviations 1-13
	Introductions 1-15

	Classical Privileged Programs 2-1
	A simple set-user-ID program 2-3
	Saved set-user-ID and saved set-group-ID 2-11
	Changing process credentials 2-17
	A few guidelines for writing privileged programs 2-20

	Capabilities 3-1
	Overview 3-3
	Process and file capabilities 3-7
	Permitted and effective capabilities 3-13
	Setting and viewing file capabilities 3-16
	Exercises 3-22
	Text-form capabilities 3-28
	Exercises 3-31
	Capabilities and execve() 3-34
	Capabilities and UID transitions 3-37
	Exercises 3-40

	Namespaces 4-1
	Overview 4-3
	An example: UTS namespaces 4-5
	Namespaces commands 4-9
	Namespaces demonstration (UTS namespaces) 4-14
	Namespace types and APIs 4-18
	Mount namespaces 4-24
	PID namespaces 4-31

	Namespaces APIs 5-1
	API Overview 5-3
	Creating a child process in new namespaces: clone() 5-5

	User Namespaces 6-1
	Overview of user namespaces 6-3
	Creating and joining a user namespace 6-6
	User namespaces: UID and GID mappings 6-14
	Exercises 6-27
	Combining user namespaces with other namespaces 6-30

	User Namespaces and Capabilities 7-1
	User namespaces and capabilities 7-3
	Exercises 7-11
	What does it mean to be superuser in a namespace? 7-14
	Homework exercises 7-23

	Cgroups: Introduction 8-1
	Preamble 8-3
	What are control groups? 8-6
	An example: the pids controller 8-12
	Creating, destroying, and populating a cgroup 8-16
	Exercises 8-23
	Enabling and disabling controllers 8-28
	Exercises 8-41

	Cgroups: Other Controllers 9-1
	Overview 9-3
	The cpu controller 9-7
	The freezer controller 9-16
	Exercises 9-18

	Wrapup 10-1
	Wrapup 10-3

