CAKE(8) Linux CAKE(8)
CAKE - Common Applications Kept Enhanced (CAKE)
tc qdisc ... cake
[ bandwidth RATE | unlimited* | autorate-ingress ]
[ rtt TIME | datacentre | lan | metro | regional | internet* |
oceanic | satellite | interplanetary ]
[ besteffort | diffserv8 | diffserv4 | diffserv3* ]
[ flowblind | srchost | dsthost | hosts | flows | dual-srchost |
dual-dsthost | triple-isolate* ]
[ nat | nonat* ]
[ wash | nowash* ]
[ split-gso* | no-split-gso ]
[ ack-filter | ack-filter-aggressive | no-ack-filter* ]
[ memlimit LIMIT ]
[ fwmark MASK ]
[ ptm | atm | noatm* ]
[ overhead N | conservative | raw* ]
[ mpu N ]
[ ingress | egress* ]
(* marks defaults)
CAKE (Common Applications Kept Enhanced) is a shaping-capable
queue discipline which uses both AQM and FQ. It combines COBALT,
which is an AQM algorithm combining Codel and BLUE, a shaper which
operates in deficit mode, and a variant of DRR++ for flow
isolation. 8-way set-associative hashing is used to virtually
eliminate hash collisions. Priority queuing is available through
a simplified diffserv implementation. Overhead compensation for
various encapsulation schemes is tightly integrated.
All settings are optional; the default settings are chosen to be
sensible in most common deployments. Most people will only need
to set the bandwidth parameter to get useful results, but reading
the Overhead Compensation and Round Trip Time sections is strongly
encouraged.
CAKE uses a deficit-mode shaper, which does not exhibit the
initial burst typical of token-bucket shapers. It will
automatically burst precisely as much as required to maintain the
configured throughput. As such, it is very straightforward to
configure.
unlimited (default)
No limit on the bandwidth.
bandwidth RATE
Set the shaper bandwidth. See tc(8) or examples below for
details of the RATE value.
autorate-ingress
Automatic capacity estimation based on traffic arriving at
this qdisc. This is most likely to be useful with cellular
links, which tend to change quality randomly. A bandwidth
parameter can be used in conjunction to specify an initial
estimate. The shaper will periodically be set to a
bandwidth slightly below the estimated rate. This
estimator cannot estimate the bandwidth of links downstream
of itself.
The size of each packet on the wire may differ from that seen by
Linux. The following parameters allow CAKE to compensate for this
difference by internally considering each packet to be bigger than
Linux informs it. To assist users who are not expert network
engineers, keywords have been provided to represent a number of
common link technologies.
Manual Overhead Specification
overhead BYTES
Adds BYTES to the size of each packet. BYTES may be
negative; values between -64 and 256 (inclusive) are
accepted.
mpu BYTES
Rounds each packet (including overhead) up to a minimum
length BYTES. BYTES may not be negative; values between 0
and 256 (inclusive) are accepted.
atm
Compensates for ATM cell framing, which is normally found
on ADSL links. This is performed after the overhead
parameter above. ATM uses fixed 53-byte cells, each of
which can carry 48 bytes payload.
ptm
Compensates for PTM encoding, which is normally found on
VDSL2 links and uses a 64b/65b encoding scheme. It is even
more efficient to simply derate the specified shaper
bandwidth by a factor of 64/65 or 0.984. See ITU G.992.3
Annex N and IEEE 802.3 Section 61.3 for details.
noatm
Disables ATM and PTM compensation.
Failsafe Overhead Keywords
These two keywords are provided for quick-and-dirty setup. Use
them if you can't be bothered to read the rest of this section.
raw (default)
Turns off all overhead compensation in CAKE. The packet
size reported by Linux will be used directly.
Other overhead keywords may be added after "raw". The
effect of this is to make the overhead compensation operate
relative to the reported packet size, not the underlying IP
packet size.
conservative
Compensates for more overhead than is likely to occur on
any widely-deployed link technology. Equivalent to
overhead 48 atm.
ADSL Overhead Keywords
Most ADSL modems have a way to check which framing scheme is in
use. Often this is also specified in the settings document
provided by the ISP. The keywords in this section are intended to
correspond with these sources of information. All of them
implicitly set the atm flag.
pppoa-vcmux
Equivalent to overhead 10 atm
pppoa-llc
Equivalent to overhead 14 atm
pppoe-vcmux
Equivalent to overhead 32 atm
pppoe-llcsnap
Equivalent to overhead 40 atm
bridged-vcmux
Equivalent to overhead 24 atm
bridged-llcsnap
Equivalent to overhead 32 atm
ipoa-vcmux
Equivalent to overhead 8 atm
ipoa-llcsnap
Equivalent to overhead 16 atm
See also the Ethernet Correction Factors section below.
VDSL2 Overhead Keywords
ATM was dropped from VDSL2 in favour of PTM, which is a much more
straightforward framing scheme. Some ISPs retained PPPoE for
compatibility with their existing back-end systems.
pppoe-ptm
Equivalent to overhead 30 ptm
PPPoE: 2B PPP + 6B PPPoE +
ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B
Frame Check Sequence +
PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-
CRC (PTM-FCS)
bridged-ptm
Equivalent to overhead 22 ptm
ETHERNET: 6B dest MAC + 6B src MAC + 2B ethertype + 4B
Frame Check Sequence +
PTM: 1B Start of Frame (S) + 1B End of Frame (Ck) + 2B TC-
CRC (PTM-FCS)
See also the Ethernet Correction Factors section below.
DOCSIS Cable Overhead Keyword
DOCSIS is the universal standard for providing Internet service
over cable-TV infrastructure.
In this case, the actual on-wire overhead is less important than
the packet size the head-end equipment uses for shaping and
metering. This is specified to be an Ethernet frame including the
CRC (aka FCS).
docsis
Equivalent to overhead 18 mpu 64 noatm
Ethernet Overhead Keywords
ethernet
Accounts for Ethernet's preamble, inter-frame gap, and
Frame Check Sequence. Use this keyword when the bottleneck
being shaped for is an actual Ethernet cable. Equivalent
to overhead 38 mpu 84 noatm
ether-vlan
Adds 4 bytes to the overhead compensation, accounting for
an IEEE 802.1Q VLAN header appended to the Ethernet frame
header. NB: Some ISPs use one or even two of these within
PPPoE; this keyword may be repeated as necessary to express
this.
Active Queue Management (AQM) consists of embedding congestion
signals in the packet flow, which receivers use to instruct
senders to slow down when the queue is persistently occupied.
CAKE uses ECN signalling when available, and packet drops
otherwise, according to a combination of the Codel and BLUE AQM
algorithms called COBALT.
Very short latencies require a very rapid AQM response to
adequately control latency. However, such a rapid response tends
to impair throughput when the actual RTT is relatively long. CAKE
allows specifying the RTT it assumes for tuning various
parameters. Actual RTTs within an order of magnitude of this will
generally work well for both throughput and latency management.
At the 'lan' setting and below, the time constants are similar in
magnitude to the jitter in the Linux kernel itself, so congestion
might be signalled prematurely. The flows will then become sparse
and total throughput reduced, leaving little or no back-pressure
for the fairness logic to work against. Use the "metro" setting
for local lans unless you have a custom kernel.
rtt TIME
Manually specify an RTT.
datacentre
For extremely high-performance 10GigE+ networks only.
Equivalent to rtt 100us.
lan
For pure Ethernet (not Wi-Fi) networks, at home or in the
office. Don't use this when shaping for an Internet access
link.
Equivalent to rtt 1ms.
metro
For traffic mostly within a single city.
Equivalent to rtt 10ms.
regional
For traffic mostly within a European-sized country.
Equivalent to rtt 30ms.
internet (default)
This is suitable for most Internet traffic.
Equivalent to rtt 100ms.
oceanic
For Internet traffic with generally above-average latency,
such as that suffered by Australasian residents.
Equivalent to rtt 300ms.
satellite
For traffic via geostationary satellites.
Equivalent to rtt 1000ms.
interplanetary
So named because Jupiter is about 1 light-hour from Earth.
Use this to (almost) completely disable AQM actions.
Equivalent to rtt 3600s.
With flow isolation enabled, CAKE places packets from different
flows into different queues, each of which carries its own AQM
state. Packets from each queue are then delivered fairly,
according to a DRR++ algorithm which minimizes latency for
"sparse" flows. CAKE uses a set-associative hashing algorithm to
minimize flow collisions.
These keywords specify whether fairness based on source address,
destination address, individual flows, or any combination of those
is desired.
flowblind
Disables flow isolation; all traffic passes through a
single queue for each tin.
srchost
Flows are defined only by source address. Could be useful
on the egress path of an ISP backhaul.
dsthost
Flows are defined only by destination address. Could be
useful on the ingress path of an ISP backhaul.
hosts
Flows are defined by source-destination host pairs. This
is host isolation, rather than flow isolation.
flows
Flows are defined by the entire 5-tuple of source address,
destination address, transport protocol, source port and
destination port. This is the type of flow isolation
performed by SFQ and fq_codel.
dual-srchost
Flows are defined by the 5-tuple, and fairness is applied
first over source addresses, then over individual flows.
Good for use on egress traffic from a LAN to the internet,
where it'll prevent any one LAN host from monopolising the
uplink, regardless of the number of flows they use.
dual-dsthost
Flows are defined by the 5-tuple, and fairness is applied
first over destination addresses, then over individual
flows. Good for use on ingress traffic to a LAN from the
internet, where it'll prevent any one LAN host from
monopolising the downlink, regardless of the number of
flows they use.
triple-isolate (default)
Flows are defined by the 5-tuple, and fairness is applied
over source *and* destination addresses intelligently (ie.
not merely by host-pairs), and also over individual flows.
Use this if you're not certain whether to use dual-srchost
or dual-dsthost; it'll do both jobs at once, preventing any
one host on *either* side of the link from monopolising it
with a large number of flows.
nat
Instructs Cake to perform a NAT lookup before applying
flow-isolation rules, to determine the true addresses and
port numbers of the packet, to improve fairness between
hosts "inside" the NAT. This has no practical effect in
"flowblind" or "flows" modes, or if NAT is performed on a
different host.
nonat (default)
Cake will not perform a NAT lookup. Flow isolation will be
performed using the addresses and port numbers directly
visible to the interface Cake is attached to.
CAKE can divide traffic into "tins" based on the Diffserv field.
Each tin has its own independent set of flow-isolation queues, and
is serviced based on a WRR algorithm. To avoid perverse Diffserv
marking incentives, tin weights have a "priority sharing" value
when bandwidth used by that tin is below a threshold, and a lower
"bandwidth sharing" value when above. Bandwidth is compared
against the threshold using the same algorithm as the deficit-mode
shaper.
Detailed customisation of tin parameters is not provided. The
following presets perform all necessary tuning, relative to the
current shaper bandwidth and RTT settings.
besteffort
Disables priority queuing by placing all traffic in one
tin.
precedence
Enables legacy interpretation of TOS "Precedence" field.
Use of this preset on the modern Internet is firmly
discouraged.
diffserv4
Provides a general-purpose Diffserv implementation with
four tins:
• Bulk (CS1, LE in kernel v5.9+), 6.25% threshold,
generally low priority.
• Best Effort (general), 100% threshold.
• Video (AF4x, AF3x, CS3, AF2x, CS2, TOS4, TOS1), 50%
threshold.
• Voice (CS7, CS6, EF, VA, CS5, CS4), 25% threshold.
diffserv3 (default)
Provides a simple, general-purpose Diffserv implementation
with three tins:
• Bulk (CS1, LE in kernel v5.9+), 6.25% threshold,
generally low priority.
• Best Effort (general), 100% threshold.
• Voice (CS7, CS6, EF, VA, TOS4), 25% threshold, reduced
Codel interval.
fwmark MASK
This options turns on fwmark-based overriding of CAKE's tin
selection. If set, the option specifies a bitmask that
will be applied to the fwmark associated with each packet.
If the result of this masking is non-zero, the result will
be right-shifted by the number of least-significant unset
bits in the mask value, and the result will be used as a
the tin number for that packet. This can be used to set
policies in a firewall script that will override CAKE's
built-in tin selection.
ingress
Indicates that CAKE is running in ingress mode (i.e.
running on the downlink of a connection). This changes the
shaper to also count dropped packets as data transferred,
as these will have already traversed the link before CAKE
can choose what to do with them.
In addition, the AQM will be tuned to always keep at least
two packets queued per flow. The reason for this is that
retransmits are more expensive in ingress mode, since
dropped packets have to traverse the link again; thus,
keeping a minimum number of packets queued will improve
throughput in cases where the number of active flows are so
large that they saturate the link even at their minimum
window size.
memlimit LIMIT
Limit the memory consumed by Cake to LIMIT bytes. Note that
this does not translate directly to queue size (so do not
size this based on bandwidth delay product considerations,
but rather on worst case acceptable memory consumption), as
there is some overhead in the data structures containing
the packets, especially for small packets.
By default, the limit is calculated based on the bandwidth
and RTT settings.
wash
Traffic entering your diffserv domain is frequently mis-
marked in transit from the perspective of your network, and
traffic exiting yours may be mis-marked from the
perspective of the transiting provider.
Apply the wash option to clear all extra diffserv (but not
ECN bits), after priority queuing has taken place.
If you are shaping inbound, and cannot trust the diffserv
markings (as is the case for Comcast Cable, among others),
it is best to use a single queue "besteffort" mode with
wash.
split-gso
This option controls whether CAKE will split General
Segmentation Offload (GSO) super-packets into their on-the-
wire components and dequeue them individually.
Super-packets are created by the networking stack to
improve efficiency. However, because they are larger they
take longer to dequeue, which translates to higher latency
for competing flows, especially at lower bandwidths. CAKE
defaults to splitting GSO packets to achieve the lowest
possible latency. At link speeds higher than 10 Gbps,
setting the no-split-gso parameter can increase the maximum
achievable throughput by retaining the full GSO packets.
CAKE supports overriding of its internal classification of packets
through the tc filter mechanism. Packets can be assigned to
different priority tins by setting the priority field on the skb,
and the flow hashing can be overridden by setting the classid
parameter.
Tin override
To assign a priority tin, the major number of the priority field
needs to match the qdisc handle of the cake instance; if it does,
the minor number will be interpreted as the tin index. For
example, to classify all ICMP packets as 'bulk', the following
filter can be used:
# tc qdisc replace dev eth0 handle 1: root cake diffserv3
# tc filter add dev eth0 parent 1: protocol ip prio 1 \
u32 match icmp type 0 0 action skbedit priority 1:1
Flow hash override
To override flow hashing, the classid can be set. CAKE will
interpret the major number of the classid as the host hash used in
host isolation mode, and the minor number as the flow hash used
for flow-based queueing. One or both of those can be set, and will
be used if the relevant flow isolation parameter is set (i.e., the
major number will be ignored if CAKE is not configured in hosts
mode, and the minor number will be ignored if CAKE is not
configured in flows mode).
This example will assign all ICMP packets to the first queue:
# tc qdisc replace dev eth0 handle 1: root cake
# tc filter add dev eth0 parent 1: protocol ip prio 1 \
u32 match icmp type 0 0 classid 0:1
If only one of the host and flow overrides is set, CAKE will
compute the other hash from the packet as normal. Note, however,
that the host isolation mode works by assigning a host ID to the
flow queue; so if overriding both host and flow, the same flow
cannot have more than one host assigned. In addition, it is not
possible to assign different source and destination host IDs
through the override mechanism; if a host ID is assigned, it will
be used as both source and destination host.
# tc qdisc delete root dev eth0
# tc qdisc add root dev eth0 cake bandwidth 100Mbit ethernet
# tc -s qdisc show dev eth0
qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm overhead 38 mpu 84
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
memory used: 0b of 5000000b
capacity estimate: 100Mbit
min/max network layer size: 65535 / 0
min/max overhead-adjusted size: 65535 / 0
average network hdr offset: 0
Bulk Best Effort Voice
thresh 6250Kbit 100Mbit 25Mbit
target 5.0ms 5.0ms 5.0ms
interval 100.0ms 100.0ms 100.0ms
pk_delay 0us 0us 0us
av_delay 0us 0us 0us
sp_delay 0us 0us 0us
pkts 0 0 0
bytes 0 0 0
way_inds 0 0 0
way_miss 0 0 0
way_cols 0 0 0
drops 0 0 0
marks 0 0 0
ack_drop 0 0 0
sp_flows 0 0 0
bk_flows 0 0 0
un_flows 0 0 0
max_len 0 0 0
quantum 300 1514 762
After some use:
# tc -s qdisc show dev eth0
qdisc cake 1: root refcnt 2 bandwidth 100Mbit diffserv3 triple-isolate rtt 100.0ms noatm overhead 38 mpu 84
Sent 44709231 bytes 31931 pkt (dropped 45, overlimits 93782 requeues 0)
backlog 33308b 22p requeues 0
memory used: 292352b of 5000000b
capacity estimate: 100Mbit
min/max network layer size: 28 / 1500
min/max overhead-adjusted size: 84 / 1538
average network hdr offset: 14
Bulk Best Effort Voice
thresh 6250Kbit 100Mbit 25Mbit
target 5.0ms 5.0ms 5.0ms
interval 100.0ms 100.0ms 100.0ms
pk_delay 8.7ms 6.9ms 5.0ms
av_delay 4.9ms 5.3ms 3.8ms
sp_delay 727us 1.4ms 511us
pkts 2590 21271 8137
bytes 3081804 30302659 11426206
way_inds 0 46 0
way_miss 3 17 4
way_cols 0 0 0
drops 20 15 10
marks 0 0 0
ack_drop 0 0 0
sp_flows 2 4 1
bk_flows 1 2 1
un_flows 0 0 0
max_len 1514 1514 1514
quantum 300 1514 762
tc(8), tc-codel(8), tc-fq_codel(8), tc-htb(8)
Cake's principal author is Jonathan Morton, with contributions
from Tony Ambardar, Kevin Darbyshire-Bryant, Toke Høiland-
Jørgensen, Sebastian Moeller, Ryan Mounce, Dean Scarff, Nils
Andreas Svee, and Dave Täht.
This manual page was written by Loganaden Velvindron. Please
report corrections to the Linux Networking mailing list
<[email protected]>.
This page is part of the iproute2 (utilities for controlling
TCP/IP networking and traffic) project. Information about the
project can be found at
⟨http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2⟩.
If you have a bug report for this manual page, send it to
[email protected], [email protected]. This page was
obtained from the project's upstream Git repository
⟨https://git.kernel.org/pub/scm/network/iproute2/iproute2.git⟩ on
2025-08-11. (At that time, the date of the most recent commit
that was found in the repository was 2025-08-08.) If you discover
any rendering problems in this HTML version of the page, or you
believe there is a better or more up-to-date source for the page,
or you have corrections or improvements to the information in this
COLOPHON (which is not part of the original manual page), send a
mail to [email protected]
iproute2 19 July 2018 CAKE(8)
Pages that refer to this page: systemd.network(5), tc(8), tc-ctinfo(8)